Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chronos models integration #34

Merged
merged 1 commit into from
May 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 48 additions & 22 deletions mmf_sa/Forecaster.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,6 +292,7 @@ def backtest_global_model(
pd.concat([train_df, val_df]),
start=train_df[self.conf["date_col"]].max(),
retrain=self.conf["backtest_retrain"],
spark=self.spark,
))

group_id_dtype = IntegerType() \
Expand Down Expand Up @@ -507,21 +508,23 @@ def evaluate_global_model(self, model_conf):
print(f"Champion alias assigned to the new model")

def evaluate_foundation_model(self, model_conf):
model_name = model_conf["name"]
model = self.model_registry.get_model(model_name)
hist_df, removed = self.prepare_data_for_global_model("evaluating")
train_df, val_df = self.split_df_train_val(hist_df)
metrics = self.backtest_global_model(
model=model,
train_df=train_df,
val_df=val_df,
model_uri="",
write=True,
)
mlflow.set_tag("action", "train")
mlflow.set_tag("candidate", "true")
mlflow.set_tag("model_name", model.params["name"])
print(f"Finished training {model_conf.get('name')}")
with mlflow.start_run(experiment_id=self.experiment_id) as run:
model_name = model_conf["name"]
model = self.model_registry.get_model(model_name)
hist_df, removed = self.prepare_data_for_global_model("evaluating") # Reuse the same as global
train_df, val_df = self.split_df_train_val(hist_df)
metrics = self.backtest_global_model( # Reuse the same as global
model=model,
train_df=train_df,
val_df=val_df,
model_uri="",
write=True,
)
mlflow.log_metric(self.conf["metric"], metrics)
mlflow.set_tag("action", "evaluate")
mlflow.set_tag("candidate", "true")
mlflow.set_tag("model_name", model.params["name"])
print(f"Finished evaluating {model_conf.get('name')}")

def score_models(self):
print("Starting run_scoring")
Expand All @@ -532,6 +535,8 @@ def score_models(self):
self.score_global_model(model_conf)
elif model_conf["model_type"] == "local":
self.score_local_model(model_conf)
elif model_conf["model_type"] == "foundation":
self.score_foundation_model(model_conf)
print(f"Finished scoring with {model_name}")
print("Finished run_scoring")

Expand Down Expand Up @@ -627,13 +632,24 @@ def score_global_model(self, model_conf):
.saveAsTable(self.conf["scoring_output"])
)

def get_latest_model_version(self, mlflow_client, registered_name):
latest_version = 1
for mv in mlflow_client.search_model_versions(f"name='{registered_name}'"):
version_int = int(mv.version)
if version_int > latest_version:
latest_version = version_int
return latest_version
def score_foundation_model(self, model_conf):
print(f"Running scoring for {model_conf['name']}...")
model_name = model_conf["name"]
model = self.model_registry.get_model(model_name)
hist_df, removed = self.prepare_data_for_global_model("evaluating")
prediction_df, model_pretrained = model.forecast(hist_df, spark=self.spark)
sdf = self.spark.createDataFrame(prediction_df).drop('index')
(
sdf.withColumn(self.conf["group_id"], col(self.conf["group_id"]).cast(StringType()))
.withColumn("model", lit(model_conf["name"]))
.withColumn("run_id", lit(self.run_id))
.withColumn("run_date", lit(self.run_date))
.withColumn("use_case", lit(self.conf["use_case_name"]))
.withColumn("model_pickle", lit(b""))
.withColumn("model_uri", lit(""))
.write.mode("append")
.saveAsTable(self.conf["scoring_output"])
)

def get_model_for_scoring(self, model_conf):
mlflow_client = MlflowClient()
Expand All @@ -649,6 +665,7 @@ def get_model_for_scoring(self, model_conf):
else:
return self.model_registry.get_model(model_conf["name"]), None


def flatten_nested_parameters(d):
out = {}
for key, val in d.items():
Expand All @@ -661,3 +678,12 @@ def flatten_nested_parameters(d):
else:
out[key] = val
return out


def get_latest_model_version(self, mlflow_client, registered_name):
latest_version = 1
for mv in mlflow_client.search_model_versions(f"name='{registered_name}'"):
version_int = int(mv.version)
if version_int > latest_version:
latest_version = version_int
return latest_version
4 changes: 4 additions & 0 deletions mmf_sa/base_forecasting_conf.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,10 @@ active_models:
- NeuralForecastAutoNHITS
- NeuralForecastAutoTiDE
- NeuralForecastAutoPatchTST
- ChronosT5Tiny
- ChronosT5Mini
- ChronosT5Small
- ChronosT5Base
- ChronosT5Large

#Here we can override hyperparameters for built-in models
Expand Down
5 changes: 4 additions & 1 deletion mmf_sa/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,10 @@ def load_models_conf():
return conf

def get_model(
self, model_name: str, override_conf: DictConfig = None
self,
model_name: str,
override_conf: DictConfig = None,
spark=None,
) -> ForecastingRegressor:
model_conf = self.active_models.get(model_name)
if override_conf is not None:
Expand Down
9 changes: 7 additions & 2 deletions mmf_sa/models/abstract_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,11 @@
import pandas as pd
import cloudpickle
from typing import Dict, Union
from transformers import pipeline
from sklearn.base import BaseEstimator, RegressorMixin
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error
import mlflow
mlflow.set_registry_uri("databricks-uc")


class ForecastingRegressor(BaseEstimator, RegressorMixin):
Expand Down Expand Up @@ -45,6 +48,7 @@ def backtest(
group_id: Union[str, int] = None,
stride: int = None,
retrain: bool = True,
spark=None,
) -> pd.DataFrame:
if stride is None:
stride = int(self.params.get("stride", 7))
Expand Down Expand Up @@ -73,7 +77,7 @@ def backtest(
if retrain:
self.fit(_df)

metrics = self.calculate_metrics(_df, actuals_df, curr_date)
metrics = self.calculate_metrics(_df, actuals_df, curr_date, spark)

if isinstance(metrics, dict):
evaluation_results = [
Expand Down Expand Up @@ -103,10 +107,11 @@ def backtest(
"actual",
"model_pickle"],
)

return res_df

def calculate_metrics(
self, hist_df: pd.DataFrame, val_df: pd.DataFrame, curr_date
self, hist_df: pd.DataFrame, val_df: pd.DataFrame, curr_date, spark=None
) -> Dict[str, Union[str, float, bytes]]:
pred_df, model_fitted = self.predict(hist_df, val_df)
smape = mean_absolute_percentage_error(
Expand Down
Loading
Loading