-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
584 additions
and
190 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
import sys | ||
from .cli import main | ||
|
||
if __name__ == "__main__": | ||
sys.exit(main()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import typer | ||
|
||
def main(): | ||
|
||
except KeyboardInterrupt: | ||
eprint("KeyboardInterrupt") | ||
exit_code = 130 | ||
return exit_code | ||
|
||
|
||
def con(): | ||
device = "cpu" | ||
|
||
|
||
#from .models import UNetLikeModel | ||
model = UNetLikeModel() | ||
model.load_state_dict(torch.load(sys.argv[2])) | ||
|
||
|
||
model.to(device) | ||
model.eval() | ||
print(model) | ||
|
||
patch_size = model.output_size(512) | ||
#img = read_uint16_image(sys.argv[3]) | ||
|
||
with open(sys.argv[3], "rb") as fp: | ||
i = load_image(magickpng(fp.read(), png48=True), assert16=True) | ||
|
||
|
||
height, width = img.shape[1:3] | ||
# TODO: 4倍数にあわせる | ||
ppp_h = h % 512 | ||
ppp_w = w % 512 | ||
a_h = h + ppp_h | ||
a_w = w + ppp_w | ||
img = img.reshape((1, 3, h, w)) | ||
res = np.zeros((3, a_h, a_w), dtype="float32") | ||
p = model.required_padding(patch_size) | ||
|
||
img = np.pad(img, ((0, 0), (0, 0), (p, p + ppp_h), (p, p + ppp_w)), mode="symmetric") | ||
for (j, i), (k, l) in model.patch_slices(a_h, a_w, patch_size): | ||
print(k) | ||
x = img[:, :, j, i] | ||
t = torch.from_numpy(x.astype("float32")) | ||
t = t.to(device) | ||
y = model(t) | ||
yy = y.detach().cpu().numpy() | ||
print(y.shape) | ||
res[:, k, l] = yy[0] | ||
res = res[:, :h, :w] | ||
save_image(res, sys.argv[4]) | ||
#save_wide_gamut_uint16_array_as_srgb(res, sys.argv[4]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import cv2 | ||
import numpy as np | ||
from pathlib import Path | ||
from numpy import ndarray | ||
from .utilities.filesys import resolve_path | ||
|
||
|
||
# ファイルパス、パスオブジェクト、またはバイトを受け取り画像を配列としてロードする | ||
def load_image(filelike: str | Path | bytes, *, transpose: bool = True, normalize: bool = True, orient: bool = True, assert16: bool = False) -> ndarray: | ||
match filelike: | ||
case str() | Path() as path: | ||
with open(resolve_path(path), "rb") as fp: | ||
buffer = fp.read() | ||
case bytes() as buffer: | ||
pass | ||
case _: | ||
raise ValueError() | ||
# OpenCV が ASCII パスしか扱えない問題を回避するためにバッファを経由する | ||
bin = np.frombuffer(buffer, np.uint8) | ||
flags = cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH | ||
if not orient: | ||
flags |= cv2.IMREAD_IGNORE_ORIENTATION | ||
img = cv2.imdecode(bin, flags) | ||
if img.ndim != 3 or img.shape[2] != 3: | ||
raise RuntimeError() | ||
if transpose: | ||
# RGBxHxW にする | ||
img = img[:, :, [2, 1, 0]].transpose(2, 0, 1) | ||
match img.dtype: | ||
case np.uint8: | ||
if assert16: | ||
raise RuntimeError() | ||
if normalize: | ||
return (img / (2**8 - 1)).astype(np.float32) | ||
else: | ||
return img | ||
case np.uint16: | ||
if normalize: | ||
return (img / (2**16 - 1)).astype(np.float32) | ||
else: | ||
return img | ||
case _: | ||
raise RuntimeError() | ||
|
||
|
||
|
||
def to_pil_image(array): | ||
srgb = rint(array * 255).clip(0, 255).astype(uint8) | ||
return Image.fromarray(srgb.transpose(1, 2, 0), "RGB") | ||
|
||
def save_image(array, filepath): | ||
to_pil_image(array).save(filepath) | ||
|
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
from abc import ABC, abstractmethod | ||
|
||
from ..utilities import range_chunks | ||
|
||
from torch import nn | ||
|
||
class AbsModel(ABC, nn.Module): | ||
|
||
@abstractmethod | ||
def forward(self, x): | ||
raise NotImplementedError() | ||
|
||
@abstractmethod | ||
def output_size(self, input_size): | ||
raise NotImplementedError() | ||
|
||
@abstractmethod | ||
def input_size(self, output_size): | ||
raise NotImplementedError() | ||
|
||
def reduced_padding(self, input_size): | ||
output_size = self.output_size(input_size) | ||
return (input_size - output_size) // 2 | ||
|
||
def required_padding(self, output_size): | ||
input_size = self.input_size(output_size) | ||
return (input_size - output_size) // 2 | ||
|
||
|
||
def patch_slices(self, height, width, patch_size): | ||
for h_start, h_stop in range_chunks(height, patch_size): | ||
for w_start, w_stop in range_chunks(width, patch_size): | ||
h_pad = self.required_padding(h_stop - h_start) | ||
w_pad = self.required_padding(w_stop - w_start) | ||
h_s = slice(h_start, h_stop) | ||
w_s = slice(w_start, w_stop) | ||
h_slice = slice(h_start - h_pad + h_pad, h_stop + h_pad * 2) | ||
w_slice = slice(w_start - w_pad + w_pad, w_stop + w_pad * 2) | ||
yield (h_slice, w_slice), (h_s, w_s) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
from ..abs import AbsModel | ||
|
||
from torch import nn | ||
|
||
|
||
def input_size(output_size, kernel_size, stride=1, padding=0): | ||
return ((output_size - 1) * stride) + kernel_size - 2 * padding | ||
|
||
|
||
def output_size(input_size, kernel_size, stride=1, padding=0): | ||
return (input_size - kernel_size + 2 * padding) // stride + 1 | ||
|
||
|
||
def fit_to_smaller(x, y): | ||
b, c, h1, w1 = x.shape | ||
_, _, h2, w2 = y.shape | ||
|
||
h = min(h1, h2) | ||
w = min(w1, w2) | ||
|
||
h1_start = (h1 - h) // 2 | ||
h1_end = h1_start + h | ||
|
||
w1_start = (w1 - w) // 2 | ||
w1_end = w1_start + w | ||
|
||
h2_start = (h2 - h) // 2 | ||
h2_end = h2_start + h | ||
|
||
w2_start = (w2 - w) // 2 | ||
w2_end = w2_start + w | ||
|
||
x = x[:, :, h1_start:h1_end, w1_start:w1_end] | ||
y = y[:, :, h2_start:h2_end, w2_start:w2_end] | ||
|
||
return x, y | ||
|
||
|
||
|
||
class UNetLikeModelLevel(AbsModel): | ||
def __init__(self, channels=256, bottom=False): | ||
super().__init__() | ||
self.bottom = bottom | ||
if not bottom: | ||
self.up = Lanczos2xUpsampler(n=2, pad=False) | ||
self.conv1 = nn.Conv2d(3 if bottom else 3 + channels, channels, kernel_size=3, stride=1, padding=0) | ||
self.a1 = nn.LeakyReLU(0.1) | ||
self.bn1 = nn.BatchNorm2d(channels) | ||
self.conv2 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, padding=0) | ||
self.a2 = nn.LeakyReLU(0.1) | ||
self.bn2 = nn.BatchNorm2d(channels) | ||
self.conv3 = nn.Conv2d(channels, channels, kernel_size=5, stride=1, padding=0) | ||
|
||
def forward(self, x, y=None): | ||
if not self.bottom: | ||
h1 = torch.cat(fit_to_smaller(x, self.up(y)), dim=1) | ||
else: | ||
h1 = x | ||
assert y is None | ||
h2 = self.a1(self.conv1(h1)) | ||
h3 = self.a2(self.conv2(self.bn1(h2))) | ||
h4 = self.conv3(self.bn2(h3)) | ||
h2_, h4_ = fit_to_smaller(h2, h4) | ||
return h2_ + h4_ | ||
|
||
def input_size(self, output_size): | ||
if self.bottom: | ||
return input_size(input_size(input_size(output_size, 5), 5), 3) | ||
else: | ||
return input_size(input_size(input_size(output_size, 5), 5), 3) // 2 + 4 | ||
|
||
def output_size(self, input_size): | ||
if self.bottom: | ||
return output_size(output_size(output_size(input_size, 3), 5), 5) | ||
else: | ||
return output_size(output_size(output_size((input_size - 4) * 2, 3), 5), 5) | ||
|
||
|
||
|
||
|
||
|
||
|
||
class UNetLikeModel(AbsModel): | ||
def __init__(self, channels=128, residual=False): | ||
super().__init__() | ||
self.residual = residual | ||
self.block3 = UNetLikeModelLevel(channels) | ||
self.block2 = UNetLikeModelLevel(channels) | ||
self.block1 = UNetLikeModelLevel(channels, bottom=True) | ||
self.av1 = nn.AvgPool2d(kernel_size=2, stride=2) | ||
self.av2 = nn.AvgPool2d(kernel_size=2, stride=2) | ||
#self.av3 = nn.AvgPool2d(kernel_size=2, stride=2) | ||
#self.up1 = Lanczos2xUpsampler(n=2, pad=False) | ||
#self.up2 = Lanczos2xUpsampler(n=2, pad=False) | ||
#self.up3 = Lanczos2xUpsampler(n=2, pad=False) | ||
self.layer4 = nn.Conv2d(channels, 3, kernel_size=3, stride=1, padding=0) | ||
|
||
|
||
def forward(self, x): | ||
#m1 = self.av1(x) | ||
m1 = x | ||
m2 = self.av1(m1) | ||
m3 = self.av2(m2) | ||
h1 = self.block1(m3) | ||
h2 = self.block2(m2, h1) | ||
h3 = self.block3(m1, h2) | ||
_h4, r = fit_to_smaller(self.layer4(h3), x) | ||
return _h4 + r | ||
|
||
def input_size(self, s): | ||
return self.block1.input_size(self.block2.input_size(self.block3.input_size(input_size(s, 3)))) * 4 | ||
|
||
def output_size(self, s): | ||
s = s // 4 | ||
return output_size(self.block3.output_size(self.block2.output_size(self.block1.output_size(s))), 3) | ||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
|
||
def lanczos(x, n): | ||
return 0.0 if abs(x) > n else np.sinc(x) * np.sinc(x / n) | ||
|
||
class Lanczos2xUpsampler(nn.Module): | ||
def __init__(self, n=3, pad=True): | ||
super().__init__() | ||
start = np.array([lanczos(i + 0.25, n) for i in range(-n, n)]) | ||
end = np.array([lanczos(i + 0.75, n) for i in range(-n, n)]) | ||
s = start / np.sum(start) | ||
e = end / np.sum(end) | ||
k1 = np.pad(s.reshape(1, n * 2) * s.reshape(n * 2, 1), ((0, 1), (0, 1))) | ||
k2 = np.pad(e.reshape(1, n * 2) * s.reshape(n * 2, 1), ((0, 1), (1, 0))) | ||
k3 = np.pad(s.reshape(1, n * 2) * e.reshape(n * 2, 1), ((1, 0), (0, 1))) | ||
k4 = np.pad(e.reshape(1, n * 2) * e.reshape(n * 2, 1), ((1, 0), (1, 0))) | ||
w = torch.tensor(np.array([[k1], [k2], [k3], [k4]], dtype=np.float32)) | ||
self.register_buffer('w', w) | ||
self.n = n | ||
self.pad = pad | ||
|
||
def forward(self, x): | ||
b, c, h, w = x.shape | ||
h1 = x.view(b * c, 1, h, w) | ||
if self.pad: | ||
h2 = F.pad(h1, (self.n, self.n, self.n, self.n), mode="reflect") | ||
else: | ||
h2 = h1 | ||
h3 = F.conv2d(h2, self.w) | ||
h4 = F.pixel_shuffle(h3, 2) | ||
if self.pad: | ||
return h4.view(b, c, h * 2, w * 2) | ||
else: | ||
return h4.view(b, c, (h - 2 * self.n) * 2, (w - 2 * self.n) * 2) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
def input_size(output_size, kernel_size, stride=1, padding=0): | ||
return ((output_size - 1) * stride) + kernel_size - 2 * padding | ||
|
||
|
||
def output_size(input_size, kernel_size, stride=1, padding=0): | ||
return (input_size - kernel_size + 2 * padding) // stride + 1 |
Oops, something went wrong.