Skip to content

CircRNA-miRNA interaction Prediction Based on Graph Neural Network

License

Notifications You must be signed in to change notification settings

csuhjhjhj/GCNCMI

Repository files navigation

GCNCMI

GCNCMI: A graph convolutional neural network approach for predicting circRNA-miRNA interactions

Requerments

numpy==1.16.6

pandas==1.1.5

scikit-learn==0.24.2

tensorflow-gpu==1.15.0

Introduction

Interactions between circular RNAs (circRNAs) and microRNAs (miRNAs) have been shown to alter gene expression and regulate disease genes. Most circRNA-miRNA interactions remain largely unknown because traditional experimental approaches are time-consuming and labor-intensive. Developing computational methods to explore the interactions between circRNAs and miRNAs at scale could help bridge this gap. In this paper, we propose a graph convolutional neural network-based method named GCNCMI to predict potential interactions between circRNAs and miRNAs. GCNCMI first mines the latent interactions of adjacent nodes in a graph convolutional neural network, and then recursively propagates the interaction information on the graph convolutional layers. Finally, it combines the embedded representations generated by each layer to make the final prediction. In five-fold cross-validation, GCNCMI achieved the highest AUC of 0.9312 and the highest AUPR of 0.9412. In addition, case studies on two miRNAs, hsa-miR-622 and hsa-miR-149-5p, showed that our model has a good effect on predicting circRNA-miRNA interactions.

Dataset

Our dataset contains 821 miRNAs and 2115 circRNAs, which we divide into a 5-fold cross-validation dataset.

Usage

1.The GCNCMI.conf file in the config directory can modify the parameters of the model.

2.Run the main function in GCNCMI to start training.

3.If you want to reuse our code, you can replace your dataset in the dataprocess method, but you need to preprocess the dataset first.

About

CircRNA-miRNA interaction Prediction Based on Graph Neural Network

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages