-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
123 additions
and
0 deletions.
There are no files selected for viewing
123 changes: 123 additions & 0 deletions
123
test/UniSparse/KernelGen/CPU/unisparse_dcsr_spconv2d_F32.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
// unisparse-opt ./unisparse_dcsr_spmm_F32.mlir -unisparse-codegen -lower-format-conversion -lower-struct -dce | \ | ||
// mlir-opt -one-shot-bufferize="bufferize-function-boundaries=1 allow-return-allocs unknown-type-conversion=identity-layout-map function-boundary-type-conversion=identity-layout-map" \ | ||
// -finalizing-bufferize -convert-linalg-to-loops -convert-vector-to-scf -convert-scf-to-cf -lower-affine \ | ||
// -convert-vector-to-llvm -convert-memref-to-llvm -convert-complex-to-standard -convert-math-to-llvm \ | ||
// -convert-math-to-libm -convert-complex-to-libm -convert-complex-to-llvm -convert-func-to-llvm \ | ||
// -reconcile-unrealized-casts | mlir-translate -mlir-to-llvmir | opt -O3 -S | llc -O3 -relocation-model=pic -filetype=obj -o dcsr_spmm_F32.o | ||
|
||
// clang++ dcsr_spmm_F32.o -L$SPLHOME/build/lib -lmlir_unisparse_runner_utils \ | ||
// -L$LLVMHOME/build/lib -lmlir_runner_utils -lmlir_c_runner_utils -o dcsr_spmm_F32 | ||
|
||
// ./dcsr_spmm_F32 | ||
|
||
!Filename = !llvm.ptr<i8> | ||
|
||
#COO = #unisparse.encoding<{ | ||
crdMap = #unisparse.crd<(i,j)->(i,j)>, | ||
compressMap = #unisparse.compress<trim(0,1)> | ||
}> | ||
|
||
#DCSR = #unisparse.encoding<{ | ||
crdMap = #unisparse.crd<(i,j)->(i,j)>, | ||
compressMap = #unisparse.compress<fuse(0), trim(0,1)> | ||
}> | ||
|
||
#trait1 = { | ||
indexing_maps = [ | ||
affine_map<(i,j,k) -> (i, k)>, // A | ||
affine_map<(i,j,k) -> (k, j)>, // B | ||
affine_map<(i,j,k) -> (i, j)> // X (out) | ||
], | ||
iterator_types = ["parallel", "parallel", "reduction"], | ||
doc = "X(i,j) =+ A(i,k) * B(k, j)" | ||
} | ||
|
||
module { | ||
func.func private @rtclock() -> f64 | ||
func.func private @getTensorFilename(index) -> (!Filename) | ||
|
||
func.func @conv2d(%input: tensor<8x8xi32>, | ||
%filter: tensor<3x3xi32, #DCSR>, | ||
%output: tensor<6x6xi32>) -> tensor<6x6xi32> { | ||
%0 = linalg.conv_2d | ||
ins (%input, %filter: tensor<8x8xi32>, tensor<3x3xi32, #DCSR>) | ||
outs (%output: tensor<6x6xi32>) -> tensor<6x6xi32> | ||
return %0 : tensor<6x6xi32> | ||
} | ||
|
||
//CHECK-LABEL: func.func @main | ||
func.func @main() { | ||
%i0 = arith.constant 0.0 : f32 | ||
%c0 = arith.constant 0 : index | ||
%c1 = arith.constant 1 : index | ||
%c4 = arith.constant 1000 : index | ||
|
||
%filter = arith.constant dense<[ | ||
[ 1.0, 0.0, -1.0 ], | ||
[ 0.0, 0.0, 0.0 ], | ||
[ -1.0, 0.0, 1.0 ] | ||
]> : tensor<3x3xf32> | ||
%sparse_filter = unisparse.convert (%filter) : tensor<3x3xf32> to tensor<3x3xf32, #DCSR> | ||
|
||
%input = arith.constant dense<[ | ||
[ 1.0, 2.0, 3.0, 4.0, 0.0, 6.0, 7.0, 8.0 ], | ||
[ 2.0, 2.0, 4.0, 4.0, 0.0, 0.0, 6.0, 8.0 ], | ||
[ 2.0, 2.0, 4.0, 4.0, 0.0, 0.0, 6.0, 8.0 ], | ||
[ 2.0, 2.0, 3.0, 4.0, 0.0, 0.0, 7.0, 8.0 ], | ||
[ 1.0, 3.0, 3.0, 4.0, 0.0, 0.0, 6.0, 8.0 ], | ||
[ 3.0, 2.0, 3.0, 4.0, 0.0, 0.0, 7.0, 8.0 ], | ||
[ 1.0, 3.0, 3.0, 4.0, 3.0, 6.0, 6.0, 8.0 ], | ||
[ 1.0, 3.0, 3.0, 4.0, 3.0, 0.0, 7.0, 8.0 ] | ||
]> : tensor<8x8xf32> | ||
|
||
// %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) | ||
|
||
// %t_start2 = call @rtclock() : () -> f64 | ||
// %A_2 = unisparse.fromFile (%fileName) : !Filename to tensor<?x?xf32, #COO> | ||
// %c256 = tensor.dim %A_2, %c1 : tensor<?x?xf32, #COO> | ||
// %a2 = unisparse.convert (%A_2): tensor<?x?xf32, #COO> to tensor<?x?xf32, #DCSR> | ||
// %t_end2 = call @rtclock() : () -> f64 | ||
// %t_2 = arith.subf %t_end2, %t_start2: f64 | ||
// vector.print %t_2 : f64 | ||
|
||
// // Initialize dense matrix. | ||
// %init_256_4 = bufferization.alloc_tensor(%c256, %c4) : tensor<?x?xf32> | ||
// %b = scf.for %i = %c0 to %c256 step %c1 iter_args(%t = %init_256_4) -> tensor<?x?xf32> { | ||
// %b2 = scf.for %j = %c0 to %c4 step %c1 iter_args(%t2 = %t) -> tensor<?x?xf32> { | ||
// %k0 = arith.muli %i, %c4 : index | ||
// %k1 = arith.addi %j, %k0 : index | ||
// %k2 = arith.index_cast %k1 : index to i32 | ||
// %k = arith.sitofp %k2 : i32 to f32 | ||
// %t3 = tensor.insert %k into %t2[%i, %j] : tensor<?x?xf32> | ||
// scf.yield %t3 : tensor<?x?xf32> | ||
// } | ||
// scf.yield %b2 : tensor<?x?xf32> | ||
// } | ||
|
||
// %o2_4_4 = bufferization.alloc_tensor(%c256, %c4) : tensor<?x?xf32> | ||
// %o2 = scf.for %i = %c0 to %c256 step %c1 iter_args(%t = %o2_4_4) -> tensor<?x?xf32> { | ||
// %x2 = scf.for %j = %c0 to %c4 step %c1 iter_args(%t2 = %t) -> tensor<?x?xf32> { | ||
// %t3 = tensor.insert %i0 into %t2[%i, %j] : tensor<?x?xf32> | ||
// scf.yield %t3 : tensor<?x?xf32> | ||
// } | ||
// scf.yield %x2 : tensor<?x?xf32> | ||
// } | ||
|
||
%t_start6 = call @rtclock() : () -> f64 | ||
%2 = call @conv2d(%input, %sparse_filter, %output) | ||
: (tensor<8x8xf32>, | ||
tensor<3x3xf32, #DCSR>, tensor<6x6xf32>) -> tensor<6x6xf32> | ||
// %2 = call @kernel_dcsr_spmm(%a2, %b, %o2) : (tensor<?x?xf32, #DCSR>, tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> | ||
%t_end6 = call @rtclock() : () -> f64 | ||
%t_6 = arith.subf %t_end6, %t_start6: f64 | ||
vector.print %t_6 : f64 | ||
%v2 = vector.transfer_read %2[%c0, %c0], %i0: tensor<?x?xf32>, vector<4x4xf32> | ||
vector.print %v2 : vector<4x4xf32> | ||
|
||
//Release the resources | ||
bufferization.dealloc_tensor %sparse_filter : tensor<3x3xf32, #DCSR> | ||
// bufferization.dealloc_tensor %init_256_4 : tensor<?x?xf32> | ||
// bufferization.dealloc_tensor %o2_4_4 : tensor<?x?xf32> | ||
return | ||
} | ||
} |