-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
new file: projects/configs/Actformer/small_5_cam_weight.py
new file: projects/configs/Actformer/tiny_5_cam.py modified: tools/analysis_tools/visual.py
- Loading branch information
Showing
2 changed files
with
545 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
# BEvFormer-small consumes at lease 10500M GPU memory | ||
# compared to bevformer_base, bevformer_small has | ||
# smaller BEV: 200*200 -> 150*150 | ||
# less encoder layers: 6 -> 3 | ||
# smaller input size: 1600*900 -> (1600*900)*0.8 | ||
# multi-scale feautres -> single scale features (C5) | ||
# with_cp of backbone = True | ||
|
||
_base_ = [ | ||
'../datasets/custom_nus-3d.py', | ||
'../_base_/default_runtime.py' | ||
] | ||
# | ||
plugin = True | ||
plugin_dir = 'projects/mmdet3d_plugin/' | ||
|
||
# If point cloud range is changed, the models should also change their point | ||
# cloud range accordingly | ||
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] | ||
voxel_size = [0.2, 0.2, 8] | ||
|
||
|
||
img_norm_cfg = dict( | ||
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) | ||
# For nuScenes we usually do 10-class detection | ||
class_names = [ | ||
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', | ||
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' | ||
] | ||
|
||
input_modality = dict( | ||
use_lidar=False, | ||
use_camera=True, | ||
use_radar=False, | ||
use_map=False, | ||
use_external=True) | ||
|
||
_dim_ = 256 | ||
_pos_dim_ = _dim_//2 | ||
_ffn_dim_ = _dim_*2 | ||
_num_levels_ = 1 | ||
bev_h_ = 150 | ||
bev_w_ = 150 | ||
queue_length = 3 # each sequence contains `queue_length` frames. | ||
|
||
model = dict( | ||
type='BEVFormer', | ||
use_grid_mask=True, | ||
video_test_mode=True, | ||
padding=True, | ||
num_cams=30, | ||
img_backbone=dict( | ||
type='ResNet', | ||
depth=101, | ||
num_stages=4, | ||
out_indices=(3,), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN2d', requires_grad=False), | ||
norm_eval=True, | ||
style='caffe', | ||
with_cp=True, # using checkpoint to save GPU memory | ||
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), # original DCNv2 will print log when perform load_state_dict | ||
stage_with_dcn=(False, False, True, True)), | ||
img_neck=dict( | ||
type='FPN', | ||
in_channels=[2048], | ||
out_channels=_dim_, | ||
start_level=0, | ||
add_extra_convs='on_output', | ||
num_outs=_num_levels_, | ||
relu_before_extra_convs=True), | ||
pts_bbox_head=dict( | ||
type='BEVFormerHead', | ||
bev_h=bev_h_, | ||
bev_w=bev_w_, | ||
num_query=900, | ||
num_classes=10, | ||
in_channels=_dim_, | ||
sync_cls_avg_factor=True, | ||
with_box_refine=True, | ||
as_two_stage=False, | ||
transformer=dict( | ||
type='PerceptionTransformer', | ||
rotate_prev_bev=True, | ||
use_shift=True, | ||
use_can_bus=True, | ||
embed_dims=_dim_, | ||
encoder=dict( | ||
type='BEVFormerEncoder', | ||
num_layers=3, | ||
pc_range=point_cloud_range, | ||
num_points_in_pillar=4, | ||
return_intermediate=False, | ||
transformerlayers=dict( | ||
type='BEVFormerLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='TemporalSelfAttention', | ||
embed_dims=_dim_, | ||
num_levels=1), | ||
dict( | ||
type='PoseSelectiveAttention', | ||
pc_range=point_cloud_range, | ||
use_weight=True, | ||
deformable_attention=dict( | ||
type='MSDeformableAttention3D', | ||
embed_dims=_dim_, | ||
num_points=8, | ||
num_levels=_num_levels_), | ||
embed_dims=_dim_, | ||
) | ||
], | ||
feedforward_channels=_ffn_dim_, | ||
ffn_dropout=0.1, | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm'))), | ||
decoder=dict( | ||
type='DetectionTransformerDecoder', | ||
num_layers=6, | ||
return_intermediate=True, | ||
transformerlayers=dict( | ||
type='DetrTransformerDecoderLayer', | ||
attn_cfgs=[ | ||
dict( | ||
type='MultiheadAttention', | ||
embed_dims=_dim_, | ||
num_heads=8, | ||
dropout=0.1), | ||
dict( | ||
type='CustomMSDeformableAttention', | ||
embed_dims=_dim_, | ||
num_levels=1), | ||
], | ||
|
||
feedforward_channels=_ffn_dim_, | ||
ffn_dropout=0.1, | ||
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', | ||
'ffn', 'norm')))), | ||
bbox_coder=dict( | ||
type='NMSFreeCoder', | ||
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], | ||
pc_range=point_cloud_range, | ||
max_num=300, | ||
voxel_size=voxel_size, | ||
num_classes=10), | ||
positional_encoding=dict( | ||
type='LearnedPositionalEncoding', | ||
num_feats=_pos_dim_, | ||
row_num_embed=bev_h_, | ||
col_num_embed=bev_w_, | ||
), | ||
loss_cls=dict( | ||
type='FocalLoss', | ||
use_sigmoid=True, | ||
gamma=2.0, | ||
alpha=0.25, | ||
loss_weight=2.0), | ||
loss_bbox=dict(type='L1Loss', loss_weight=0.25), | ||
loss_iou=dict(type='GIoULoss', loss_weight=0.0)), | ||
# model training and testing settings | ||
train_cfg=dict(pts=dict( | ||
grid_size=[512, 512, 1], | ||
voxel_size=voxel_size, | ||
point_cloud_range=point_cloud_range, | ||
out_size_factor=4, | ||
assigner=dict( | ||
type='HungarianAssigner3D', | ||
cls_cost=dict(type='FocalLossCost', weight=2.0), | ||
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), | ||
iou_cost=dict(type='IoUCost', weight=0.0), # Fake cost. This is just to make it compatible with DETR head. | ||
pc_range=point_cloud_range)))) | ||
|
||
dataset_type = 'CustomV2XSIMDataset' | ||
data_root = 'data/V2X-Sim-2.0/' | ||
file_client_args = dict(backend='disk') | ||
|
||
|
||
train_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='PhotoMetricDistortionMultiViewImage'), | ||
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), | ||
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), | ||
dict(type='ObjectNameFilter', classes=class_names), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
dict(type='RandomScaleImageMultiViewImage', scales=[0.8]), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='CustomCollect3D', keys=['gt_bboxes_3d', 'gt_labels_3d', 'img']) | ||
] | ||
|
||
test_pipeline = [ | ||
dict(type='LoadMultiViewImageFromFiles', to_float32=True), | ||
dict(type='NormalizeMultiviewImage', **img_norm_cfg), | ||
# dict(type='PadMultiViewImage', size_divisor=32), | ||
dict( | ||
type='MultiScaleFlipAug3D', | ||
img_scale=(1600, 900), | ||
pts_scale_ratio=1, | ||
flip=False, | ||
transforms=[ | ||
dict(type='RandomScaleImageMultiViewImage', scales=[0.8]), | ||
dict(type='PadMultiViewImage', size_divisor=32), | ||
dict( | ||
type='DefaultFormatBundle3D', | ||
class_names=class_names, | ||
with_label=False), | ||
dict(type='CustomCollect3D', keys=['img']) | ||
]) | ||
] | ||
|
||
data = dict( | ||
samples_per_gpu=1, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'v2x_sim_infos_train_5.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names, | ||
modality=input_modality, | ||
test_mode=False, | ||
use_valid_flag=True, | ||
bev_size=(bev_h_, bev_w_), | ||
queue_length=queue_length, | ||
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset | ||
# and box_type_3d='Depth' in sunrgbd and scannet dataset. | ||
box_type_3d='LiDAR'), | ||
val=dict(type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'v2x_sim_infos_val_5.pkl', | ||
pipeline=test_pipeline, bev_size=(bev_h_, bev_w_), | ||
classes=class_names, modality=input_modality, samples_per_gpu=1), | ||
test=dict(type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'v2x_sim_infos_val_5.pkl', | ||
pipeline=test_pipeline, bev_size=(bev_h_, bev_w_), | ||
classes=class_names, modality=input_modality), | ||
shuffler_sampler=dict(type='DistributedGroupSampler'), | ||
nonshuffler_sampler=dict(type='DistributedSampler') | ||
) | ||
|
||
optimizer = dict( | ||
type='AdamW', | ||
lr=2e-4, | ||
paramwise_cfg=dict( | ||
custom_keys={ | ||
'img_backbone': dict(lr_mult=0.1), | ||
}), | ||
weight_decay=0.01) | ||
|
||
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | ||
# learning policy | ||
lr_config = dict( | ||
policy='CosineAnnealing', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=1.0 / 3, | ||
min_lr_ratio=1e-3) | ||
total_epochs = 24 | ||
evaluation = dict(interval=1, pipeline=test_pipeline) | ||
|
||
runner = dict(type='EpochBasedRunner', max_epochs=total_epochs) | ||
load_from = 'ckpts/r101_dcn_fcos3d_pretrain.pth' | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
checkpoint_config = dict(interval=1) |
Oops, something went wrong.