Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix B matrix layout #85

Merged
merged 8 commits into from
Jun 19, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 44 additions & 16 deletions include/cute/atom/copy_traits_xe.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,24 +37,55 @@

namespace cute
{

template <class IntT>
CUTE_HOST_DEVICE constexpr
auto get_shape_WHD(cute::Stride<Int<1>, IntT, IntT> s, cute::Shape<int,int,int> shape_MKL) {
aacostadiaz marked this conversation as resolved.
Show resolved Hide resolved
return shape_MKL;
}

template <class IntT>
CUTE_HOST_DEVICE constexpr
auto get_shape_WHD(cute::Stride<IntT, Int<1>, IntT> s, cute::Shape<int,int,int> shape_MKL) {
aacostadiaz marked this conversation as resolved.
Show resolved Hide resolved
return Shape<int, int, int>(get<1>(shape_MKL), get<0>(shape_MKL), get<2>(shape_MKL));
}

template <class IntT, class TS, class SLayout>
CUTE_HOST_DEVICE constexpr
auto get_coordinates(cute::Stride<Int<1>, IntT, IntT> s,
aacostadiaz marked this conversation as resolved.
Show resolved Hide resolved
Tensor<ViewEngine<ArithmeticTupleIterator<TS>>, SLayout> const &src) {
auto [x, y, z] = src.data().coord_;
return make_coord(x, y, z);
}

template <class IntT, class TS, class SLayout>
CUTE_HOST_DEVICE constexpr
auto get_coordinates(cute::Stride<IntT, Int<1>, IntT> s,
aacostadiaz marked this conversation as resolved.
Show resolved Hide resolved
Tensor<ViewEngine<ArithmeticTupleIterator<TS>>, SLayout> const &src) {
auto [x, y, z] = src.data().coord_;
return make_coord(y, x, z);
}

template <class CopyOp, class GTensor>
struct XE_2D_LD_Unpack
{
GTensor tensor;

using Copy_Traits = Copy_Traits<CopyOp, GTensor>;

template <class TS, class SLayout,
class TD, class DLayout>
CUTE_HOST_DEVICE friend constexpr void
copy_unpack(Copy_Traits const &traits,
Tensor<ViewEngine<ArithmeticTupleIterator<TS>>, SLayout> const &src,
Tensor<TD, DLayout> &dst)
{
static_assert(is_rmem<TD>::value);
int H = size<0>(traits.tensor);
int W = size<1>(traits.tensor) * sizeof(typename Copy_Traits::CopyInternalType);
auto [y, x, z] = src.data().coord_;
CopyOp::copy(traits.tensor.data() + z, W, H, W, intel::coord_t{x, y}, &*dst.data());
static_assert(is_rmem<TD>::value);
auto shape_wdh = get_shape_WHD(traits.tensor.stride(), traits.tensor.shape());
int W = size<0>(shape_wdh) * sizeof(typename Copy_Traits::CopyInternalType);
int H = size<1>(shape_wdh);
aacostadiaz marked this conversation as resolved.
Show resolved Hide resolved
auto [x, y, z] = get_coordinates(traits.tensor.stride(), src);
CopyOp::copy(traits.tensor.data() + z, W, H, W, intel::coord_t{x, y}, &*dst.data());
}

template <class GCoord, class GShape, class GStride>
Expand Down Expand Up @@ -105,15 +136,13 @@ struct Copy_Traits<XE_2D_U16x8x16x4x2_LD_N, GTensor>
: XE_2D_LD_Unpack<XE_2D_U16x8x16x4x2_LD_N, GTensor>
{
// Logical thread id to thread idx
using ThrID = Layout<_16>;
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_16, _64>, Stride<_0, _1>>;
using SrcLayout = Layout<Shape<_1, Shape<_1, _1>>>; // one coordinate
// Map from (dst-thr,dst-val) to bit
using DstLayout =
Layout<Shape<_16, Shape<Shape<_8, _4>, Shape<_16, _2>>>,
Stride<_16, Stride<Stride<_512, _4096>, Stride<_1, _256>>>>;
using DstLayout = Layout<Shape<_1, Shape<_32, _2>>>;
// Reference map from (thr,val) to bit
using RefLayout = DstLayout;
using RefLayout = SrcLayout;
using CopyInternalType = ushort;
};

Expand Down Expand Up @@ -188,14 +217,13 @@ struct Copy_Traits<XE_2D_U16x16x16x2x1_LD_N, GTensor>
: XE_2D_LD_Unpack<XE_2D_U16x16x16x2x1_LD_N, GTensor>
{
// Logical thread id to thread idx
using ThrID = Layout<_16>;
using ThrID = Layout<_1>;
// Map from (src-thr,src-val) to bit
using SrcLayout = Layout<Shape<_16, _64>, Stride<_0, _1>>;
using SrcLayout = Layout<Shape<_1, Shape<_1, _4>>>; // expected 4 coordinates
// Map from (dst-thr,dst-val) to bit
using DstLayout =
Layout<Shape<_16, Shape<_16, _32>>, Stride<_32, Stride<_512, _1>>>;
using DstLayout = Layout<Shape<_1, Shape<_32, _4>>>;
// Reference map from (thr,val) to bit
using RefLayout = DstLayout;
using RefLayout = SrcLayout;
// 32 bits register file
using CopyInternalType = uint;
};
Expand Down
8 changes: 6 additions & 2 deletions include/cute/util/debug.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,9 @@ bool
block(int bid)
{
#if defined(CUTLASS_ENABLE_SYCL)
return (syclcompat::get_nd_item<3>().get_group_linear_id()==bid);
using namespace syclcompat;
return (work_group_id::x() + work_group_id::y() * work_group_range::x() +
work_group_id::z() * work_group_range::y() * work_group_range::x() == bid);
#elif defined(__CUDA_ARCH__)
return blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y == bid;
#else
Expand All @@ -142,7 +144,9 @@ bool
thread(int tid, int bid)
{
#if defined(CUTLASS_ENABLE_SYCL)
return (syclcompat::get_nd_item<3>().get_global_linear_id()==bid);
using namespace syclcompat;
return (local_id::x() + local_id::y() * local_range::x() +
local_id::z() * local_range::x() * local_range::y() == tid) && block(bid);
#elif defined(__CUDA_ARCH__)
return (threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y == tid) && block(bid);
#else
Expand Down
16 changes: 7 additions & 9 deletions include/cutlass/gemm/collective/intel_pvc_mma.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -149,7 +149,7 @@ struct CollectiveMma<
auto [M,N,K,L] = problem_shape_MNKL;

Tensor tensorA = make_tensor(args.ptr_A, make_layout(make_shape(M,K,L), args.dA));
Tensor tensorB = make_tensor(args.ptr_B, make_layout(make_shape(K,N,L), args.dB));
Tensor tensorB = make_tensor(args.ptr_B, make_layout(make_shape(N,K,L), args.dB));

typename Params::XE_Copy_A copyA = make_xe_2d_copy<GmemTiledCopyA>(tensorA);
typename Params::XE_Copy_B copyB = make_xe_2d_copy<GmemTiledCopyB>(tensorB);
Expand Down Expand Up @@ -187,14 +187,14 @@ struct CollectiveMma<
static_assert(is_rmem<FrgTensorC>::value, "C tensor must be rmem resident.");

// Tensor to hold input data
Tensor tAr = make_tensor<typename TiledMma::ValTypeA>(Shape<Int<get<0>(SubgroupTileShape{}) * FragsK>, Int<1>>{});
Tensor tBr = make_tensor<typename TiledMma::ValTypeB>(
Shape<Int<FragsK * get<1>(SubgroupTileShape{}) / FragsN>, Int<FragsN>>{});
Tensor tAr = make_tensor<typename TiledMma::ValTypeA>(Shape<Int<get<0>(SubgroupTileShape{})>, Int<FragsK>>{});
Tensor tBr = make_tensor<typename TiledMma::ValTypeB>(Shape<Int<get<1>(SubgroupTileShape{}) / 2>, Int<FragsN>>{});

Tensor tAr_view = make_tensor(static_cast<decltype(tAr) &&>(tAr).data(),
Shape<Int<VecA>, Int<FragsM>, Int<FragsK>>{});
Tensor tBr_view = make_tensor(static_cast<decltype(tBr) &&>(tBr).data(),
Shape<Int<VecB>, Int<FragsK>, Int<FragsN>>{});
Shape<Int<VecB>, Int<FragsN>, Int<FragsK>>{},
Stride<_1, Int<get<1>(SubgroupTileShape{}) / 2>, Int<VecB>>{});

// Instantiate the M MA object
TiledMma tiled_mma;
Expand All @@ -206,11 +206,9 @@ struct CollectiveMma<
{
// Copy gmem to rmem for the first k_tile
copy(mainloop.gmem_tiled_copy_a, gA(_,_,k), tAr);
copy(mainloop.gmem_tiled_copy_b, gB(_,k/2,_), tBr);
copy(mainloop.gmem_tiled_copy_b, gB(_,_,k/2), tBr);

for (int kl = 0; kl < FragsK; kl++) {
cute::gemm(tiled_mma, accum, tAr_view(_, _, kl), tBr_view(_, kl, _), src_accum);
}
cute::gemm(tiled_mma, accum, tAr_view, tBr_view, src_accum);
}
}
};
Expand Down
6 changes: 3 additions & 3 deletions include/cutlass/gemm/kernel/intel_pvc_gemm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -221,9 +221,9 @@ class GemmUniversal<
make_stride(Int<FragsM>{} * get<0>(MmaAtomShape()),_1{}));
Tensor tBi = params.mainloop.gmem_tiled_copy_b.get_pvc_tensor(
make_coord(0, n_coord, 0),
make_shape(K, Int<FragsN>{}, L),
make_stride(_1{}, get<1>(MmaAtomShape())));
make_coord(n_coord, 0, 0),
make_shape(Int<FragsN>{}, K / 2, L),
make_stride(get<1>(MmaAtomShape()), _1{}));
// Compute tile residues for predication
auto m_max_coord = M - get<0>(subgroup_shape) * m_coord; // M - SUB_M * m_coord
Expand Down
Loading