-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e00cebe
commit defb3cf
Showing
8 changed files
with
46 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
\ifx\total\undefined | ||
\documentclass{ctexart} | ||
\usepackage{geometry} | ||
\usepackage{amsmath} | ||
\usepackage{amsfonts} | ||
\begin{document} | ||
\fi | ||
|
||
\paragraph{定义} | ||
设$\mathcal{A} \in \mathcal{L}(V),\mathcal{A}^{*}$是$\mathcal{A}$的伴随算子,如果$\mathcal{A} \circ \mathcal{A}^{*}$,则称$\mathcal{A}$是正规(normal)算子.设$\mathcal{A} \in M_{n}(\mathbb{R})$,如果$AA^{t} = A^{t}A$,则称$A$是正规矩阵. | ||
|
||
\paragraph{注} | ||
由定理2.1和第二章定理2.1可知,$\mathcal{A}$是正规算子当且仅当$\mathcal{A}$在某组单位正交基下的矩阵是正规的. | ||
|
||
\paragraph{引理2.1} | ||
设$\mathcal{A} \in \mathbb{R}^{m \times n}$,如果$tr(AA^{t}) = 0$,则$A = O_{m \times n}$ | ||
|
||
\paragraph{引理2.2} | ||
设$W$是$\mathcal{R}$上$n$维线性空间,$n>0$,$\mathcal{A} \in \mathcal{L}(V)$,则$W$有1维或2维不变子空间. | ||
|
||
\paragraph{引理2.3} | ||
设$A \in M_{n}(\mathbb{R})$是正规的,如果 | ||
%matrix begin | ||
$$ | ||
A = | ||
\left[ | ||
\begin{matrix} | ||
A_{1} & A_{2} \\ | ||
0 & A_{3} | ||
\end{matrix} | ||
\right] | ||
$$,其中$A_{1} \in M_{d}(\mathbb{R}),A_{2} \in \mathbb{R}^{d \times n-d},A_{3} \in M_{n-d}(\mathbb{R}),0<d<n.$,则$A_{2} = 0$ | ||
%matrix end | ||
|
||
\paragraph{引理2.4} | ||
设$\mathcal{A} \in \mathcal{L}(V)$正规,如果$U \subset V$是$\mathcal{A}-$不变子空间,则$U^{\bot}$也是 | ||
|
||
\paragraph{引理2.5} | ||
设$\mathcal{A} \in \mathcal{L}(V)$正规,则存在$A-$不可分子空间$U_{1},\cdots,U_{l}$使得\\ | ||
(i) $V = U_{1} \bigoplus \cdots \bigoplus U_{l}$ | ||
(ii) $\forall i,j \in \{1,\cdots\}$ | ||
|
||
\ifx\total\undefined | ||
\end{document} | ||
\fi |