Skip to content

chaosisaladdar/my_libcity

Repository files navigation


LibCity(阡陌)

HomePage|Docs|Datasets|Paper List|中文版

LibCity is a unified, comprehensive, and extensible library, which provides researchers with a credible experimental tool and a convenient development framework in the traffic prediction field. Our library is implemented based on PyTorch and includes all the necessary steps or components related to traffic prediction into a systematic pipeline, allowing researchers to conduct comprehensive experiments. Our library will contribute to the standardization and reproducibility in the field of traffic prediction.

LibCity currently supports the following tasks:

  • Traffic State Prediction
    • Traffic Flow Prediction
    • Traffic Speed Prediction
    • On-Demand Service Prediction
    • Origin-destination Matrix Prediction
    • Traffic Accidents Prediction
  • Trajectory Next-Location Prediction
  • Estimated Time of Arrival
  • Map Matching
  • Road Network Representation Learning

Features

  • Unified: LibCity builds a systematic pipeline to implement, use and evaluate traffic prediction models in a unified platform. We design basic spatial-temporal data storage, unified model instantiation interfaces, and standardized evaluation procedure.

  • Comprehensive: 60 models covering 9 traffic prediction tasks have been reproduced to form a comprehensive model warehouse. Meanwhile, LibCity collects 35 commonly used datasets of different sources and implements a series of commonly used evaluation metrics and strategies for performance evaluation.

  • Extensible: LibCity enables a modular design of different components, allowing users to flexibly insert customized components into the library. Therefore, new researchers can easily develop new models with the support of LibCity.

Overall Framework

  • Configuration Module: Responsible for managing all the parameters involved in the framework.
  • Data Module: Responsible for loading datasets and data preprocessing operations.
  • Model Module: Responsible for initializing the reproduced baseline model or custom model.
  • Evaluation Module: Responsible for evaluating model prediction results through multiple indicators.
  • Execution Module: Responsible for model training and prediction.

Installation

LibCity can only be installed from source code.

Please execute the following command to get the source code.

git clone https://github.com/LibCity/Bigscity-LibCity
cd Bigscity-LibCity

More details about environment configuration is represented in Docs.

Quick-Start

Before run models in LibCity, please make sure you download at least one dataset and put it in directory ./raw_data/. The dataset link is BaiduDisk with code 1231 or Google Drive. All dataset used in LibCity needs to be processed into the atomic files format.

The script run_model.py is used for training and evaluating a single model in LibCity. When run the run_model.py, you must specify the following three parameters, namely task, dataset and model.

For example:

python run_model.py --task traffic_state_pred --model GRU --dataset METR_LA

This script will run the GRU model on the METR_LA dataset for traffic state prediction task under the default configuration. We have released the correspondence between datasets, models, and tasks at here.

More details is represented in Docs.

TensorBoard Visualization

During the model training process, LibCity will record the loss of each epoch, and support tensorboard visualization.

After running the model once, you can use the following command to visualize:

tensorboard --logdir 'libcity/cache'
TensorFlow installation not found - running with reduced feature set.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

Visit this address(http://localhost:6006/) in the browser to see the visualized result.

Reproduced Model List

For a list of all models reproduced in LibCity, see Docs, where you can see the abbreviation of the model and the corresponding papers and citations.

Tutorial

In order to facilitate users to use LibCity, we provide users with some tutorials:

Contribution

The LibCity is mainly developed and maintained by Beihang Interest Group on SmartCity (BIGSCITY). The core developers of this library are @aptx1231 and @WenMellors.

Several co-developers have also participated in the reproduction of the model, the list of contributions of which is presented in the reproduction contribution list.

If you encounter a bug or have any suggestion, please contact us by raising an issue. You can also contact us by sending an email to [email protected].

Cite

Our paper is accepted by ACM SIGSPATIAL 2021. If you find LibCity useful for your research or development, please cite our paper.

@inproceedings{10.1145/3474717.3483923,
  author = {Wang, Jingyuan and Jiang, Jiawei and Jiang, Wenjun and Li, Chao and Zhao, Wayne Xin},
  title = {LibCity: An Open Library for Traffic Prediction},
  year = {2021},
  isbn = {9781450386647},
  publisher = {Association for Computing Machinery},
  address = {New York, NY, USA},
  url = {https://doi.org/10.1145/3474717.3483923},
  doi = {10.1145/3474717.3483923},
  booktitle = {Proceedings of the 29th International Conference on Advances in Geographic Information Systems},
  pages = {145–148},
  numpages = {4},
  keywords = {Spatial-temporal System, Reproducibility, Traffic Prediction},
  location = {Beijing, China},
  series = {SIGSPATIAL '21}
}
Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao. 2021. LibCity: An Open Library for Traffic Prediction. In Proceedings of the 29th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '21). Association for Computing Machinery, New York, NY, USA, 145–148. DOI:https://doi.org/10.1145/3474717.3483923

License

LibCity uses Apache License 2.0.

Stargazers

Stargazers repo roster for @LibCity/Bigscity-LibCity

Forkers

Forkers repo roster for @LibCity/Bigscity-LibCity

About

本地libcity代码

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages