Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix colliding ligand entity IDs #249

Merged
merged 1 commit into from
Dec 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions chai_lab/data/dataset/inference_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,8 +126,19 @@ def raw_inputs_to_entitites_data(
assert residues is not None

# Determine the entity id (unique integer for each distinct sequence)
# NOTE very important for recognizing things like homo polymers
seq: tuple[str, ...] = tuple(res.name for res in residues)
# NOTE because ligand residues have a single "LIG" residue name, the name field
# cannot be used to distinguish them. Instead, we use the sequence field itself,
# which should contain the SMILES string. This is not ideal, as it fails to
# distinguish betwen different SMILES strings that represent the same molecule,
# but should capture most cases.
# We do not need to do special check on glycans because they are specified as a
# string of monosaccharides, which behaves similarly to a string of amino acid
# residues.
seq: tuple[str, ...] = (
(input.sequence,)
if input.entity_type == EntityType.LIGAND.value
else tuple(res.name for res in residues)
)
entity_key: tuple[EntityType, tuple[str, ...]] = (entity_type, seq)
if entity_key in entity_to_index:
entity_id = entity_to_index[entity_key]
Expand Down
51 changes: 51 additions & 0 deletions tests/test_inference_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,16 @@
"""

import pytest
import torch

from chai_lab.data.dataset.inference_dataset import Input, load_chains_from_raw
from chai_lab.data.dataset.structure.all_atom_residue_tokenizer import (
AllAtomResidueTokenizer,
)
from chai_lab.data.dataset.structure.all_atom_structure_context import (
AllAtomStructureContext,
)
from chai_lab.data.dataset.structure.chain import Chain
from chai_lab.data.parsing.structure.entity_type import EntityType
from chai_lab.data.sources.rdkit import RefConformerGenerator

Expand Down Expand Up @@ -53,3 +58,49 @@ def test_ions_parsing(tokenizer: AllAtomResidueTokenizer):
assert chain.structure_context.num_atoms == 1
assert chain.structure_context.atom_ref_charge == 2
assert chain.structure_context.atom_ref_element.item() == 12


def test_protein_with_smiles(tokenizer: AllAtomResidueTokenizer):
"""Complex with multiple duplicated protein chains and SMILES ligands."""
# Based on https://www.rcsb.org/structure/1AFS
seq = "MDSISLRVALNDGNFIPVLGFGTTVPEKVAKDEVIKATKIAIDNGFRHFDSAYLYEVEEEVGQAIRSKIEDGTVKREDIFYTSKLWSTFHRPELVRTCLEKTLKSTQLDYVDLYIIHFPMALQPGDIFFPRDEHGKLLFETVDICDTWEAMEKCKDAGLAKSIGVSNFNCRQLERILNKPGLKYKPVCNQVECHLYLNQSKMLDYCKSKDIILVSYCTLGSSRDKTWVDQKSPVLLDDPVLCAIAKKYKQTPALVALRYQLQRGVVPLIRSFNAKRIKELTQVFEFQLASEDMKALDGLNRNFRYNNAKYFDDHPNHPFTDEN"
nap = "NC(=O)c1ccc[n+](c1)[CH]2O[CH](CO[P]([O-])(=O)O[P](O)(=O)OC[CH]3O[CH]([CH](O[P](O)(O)=O)[CH]3O)n4cnc5c(N)ncnc45)[CH](O)[CH]2O"
tes = "O=C4C=C3C(C2CCC1(C(CCC1O)C2CC3)C)(C)CC4"
inputs = [
Input(seq, EntityType.PROTEIN.value, entity_name="A"),
Input(seq, EntityType.PROTEIN.value, entity_name="B"),
Input(nap, EntityType.LIGAND.value, entity_name="C"),
Input(nap, EntityType.LIGAND.value, entity_name="D"),
Input(tes, EntityType.LIGAND.value, entity_name="E"),
Input(tes, EntityType.LIGAND.value, entity_name="F"),
]
chains: list[Chain] = load_chains_from_raw(inputs, tokenizer=tokenizer)
assert len(chains) == len(inputs)

example = AllAtomStructureContext.merge(
[chain.structure_context for chain in chains]
)

# Should be 1 protein chain, 2 ligand chains
assert example.token_entity_id.unique().numel() == 3
assert example.token_asym_id.unique().numel() == 6

# Check protein chains
prot_entity_ids = example.token_entity_id[
example.token_entity_type == EntityType.PROTEIN.value
]
assert torch.unique(prot_entity_ids).numel() == 1
prot_sym_ids = example.token_sym_id[
example.token_entity_type == EntityType.PROTEIN.value
]
assert torch.unique(prot_sym_ids).numel() == 2 # Two copies of this chain

# Check ligand chains
lig_entity_ids = example.token_entity_id[
example.token_entity_type == EntityType.LIGAND.value
]
assert torch.unique(lig_entity_ids).numel() == 2
lig_sym_ids = example.token_sym_id[
example.token_entity_type == EntityType.LIGAND.value
]
assert torch.unique(lig_sym_ids).numel() == 2 # Two copies of each ligand
Loading