-
Notifications
You must be signed in to change notification settings - Fork 199
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
173 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
# Copyright (c) 2024 Chai Discovery, Inc. | ||
# Licensed under the Apache License, Version 2.0. | ||
# See the LICENSE file for details. | ||
""" | ||
Stage the folders for chai | ||
""" | ||
|
||
import logging | ||
from pathlib import Path | ||
|
||
import pandas as pd | ||
import typer | ||
|
||
from chai_lab.data.io.cif_utils import get_chain_letter | ||
from chai_lab.data.parsing.fasta import Fasta, write_fastas | ||
from chai_lab.data.parsing.msas.a3m import read_colabfold_a3m | ||
from chai_lab.data.parsing.msas.aligned_pqt import ( | ||
AlignedParquetModel, | ||
expected_basename, | ||
) | ||
from chai_lab.data.parsing.msas.data_source import MSADataSource | ||
from chai_lab.data.parsing.templates.m8 import parse_m8_file | ||
|
||
app = typer.Typer(pretty_exceptions_enable=False) | ||
|
||
|
||
def read_colabfold_inputs(fname: Path) -> dict[str, list[Fasta]]: | ||
"""Extracts sequences from colabfold input table.""" | ||
df = pd.read_csv(fname, delimiter=",") | ||
assert list(df.columns) == ["id", "sequence"] | ||
retval: dict[str, list[Fasta]] = {} | ||
for row in df.itertuples(): | ||
sequences: list[str] = row.sequence.split(":") # type: ignore | ||
complex: list[Fasta] = [ | ||
Fasta(header=f"protein|{get_chain_letter(i)}", sequence=seq) | ||
for i, seq in enumerate(sequences, start=1) | ||
] | ||
retval[row.id] = complex # type: ignore | ||
return retval | ||
|
||
|
||
def gather_colabfold_msas( | ||
colabfold_out_dir: Path, identifier: str, output_folder: Path | ||
) -> dict[str, str]: | ||
"""Gathers MSAs generated by colabfold and writes them to the given output folder. | ||
Returns mapping of colabfold generated identifiers -> sequences. | ||
""" | ||
output_folder.mkdir(parents=True, exist_ok=True) | ||
paired_msa = read_colabfold_a3m( | ||
colabfold_out_dir / f"{identifier}_pairgreedy/pair.a3m" | ||
) | ||
# The paired MSA should be the same number of rows for all | ||
paired_lengths = set(len(v) for v in paired_msa.values()) | ||
assert len(paired_lengths) == 1 | ||
n_paired = paired_lengths.pop() | ||
logging.info(f"[{identifier}] Colabfold paired {n_paired} MSAs") | ||
|
||
# Read in also the single chain MSAs | ||
uniref_msa = read_colabfold_a3m(colabfold_out_dir / f"{identifier}_env/uniref.a3m") | ||
|
||
env_msa = read_colabfold_a3m( | ||
colabfold_out_dir / f"{identifier}_env/bfd.mgnify30.metaeuk30.smag30.a3m" | ||
) | ||
assert set(uniref_msa.keys()) == set(env_msa.keys()) == set(paired_msa.keys()) | ||
|
||
retval: dict[str, str] = {} | ||
for query in paired_msa.keys(): | ||
query_seq = uniref_msa[query][0].sequence | ||
msa_rows = [] | ||
for i, row in enumerate(paired_msa[query]): | ||
record = { | ||
"sequence": row.sequence, | ||
"source_database": ( | ||
MSADataSource.QUERY if i == 0 else MSADataSource.UNIREF90 | ||
).value, | ||
"pairing_key": str(i) if i > 0 else "", | ||
"comment": "null", | ||
} | ||
msa_rows.append(record) | ||
for row in uniref_msa[query][1:]: | ||
msa_rows.append( | ||
{ | ||
"sequence": row.sequence, | ||
"source_database": MSADataSource.UNIREF90.value, | ||
"pairing_key": "", | ||
"comment": "null", | ||
} | ||
) | ||
for row in env_msa[query][1:]: | ||
msa_rows.append( | ||
{ | ||
"sequence": row.sequence, | ||
"source_database": MSADataSource.BFD_UNICLUST.value, | ||
"pairing_key": "", | ||
"comment": "null", | ||
} | ||
) | ||
table = pd.DataFrame.from_records(msa_rows) | ||
AlignedParquetModel.validate(table) | ||
table.to_parquet(output_folder / expected_basename(query_sequence=query_seq)) | ||
retval[query] = query_seq | ||
return retval | ||
|
||
|
||
def gather_colabfold_templates( | ||
colabfold_out_dir: Path, | ||
identifier: str, | ||
chain_id_mapping: dict[str, str], | ||
output_folder: Path, | ||
) -> Path: | ||
template_file = colabfold_out_dir / f"{identifier}_env" / "pdb70.m8" | ||
assert template_file.is_file() | ||
templates = parse_m8_file(template_file) | ||
templates["query_id"] = templates["query_id"].apply( | ||
lambda s: chain_id_mapping[str(s)] | ||
) | ||
outfile = output_folder / "all_template_hits.m8" | ||
templates.to_csv(outfile, sep="\t", index=False, header=False) | ||
return outfile | ||
|
||
|
||
@app.command() | ||
def main(colabfold_out_dir: Path, chai_dir: Path): | ||
"""Takes a directory containing colabfold outputs and stages them for Chai1.""" | ||
csv_files = list(colabfold_out_dir.glob("*.csv")) | ||
assert len(csv_files) == 1, f"Expected a single csv file but got {len(csv_files)}" | ||
fasta_entries: dict[str, list[Fasta]] = read_colabfold_inputs(csv_files.pop()) | ||
|
||
for identifier, sequences in fasta_entries.items(): | ||
chai_out_folder = chai_dir / identifier | ||
chai_out_folder.mkdir(parents=True, exist_ok=True) | ||
colabfold_id_to_seq = gather_colabfold_msas( | ||
colabfold_out_dir=colabfold_out_dir, | ||
identifier=identifier, | ||
output_folder=chai_out_folder / "msas", | ||
) | ||
assert set(colabfold_id_to_seq.values()) == set([f.sequence for f in sequences]) | ||
|
||
# Build a mapping for each sequence in the input to the | ||
colab_id_to_chai_id = {} | ||
for colabfold_id, seq in colabfold_id_to_seq.items(): | ||
chai_seq_matches = [s for s in sequences if s.sequence == seq] | ||
assert len(chai_seq_matches) | ||
colab_id_to_chai_id[colabfold_id] = chai_seq_matches.pop().header.split( | ||
"|", maxsplit=1 | ||
)[-1] | ||
|
||
gather_colabfold_templates( | ||
colabfold_out_dir=colabfold_out_dir, | ||
identifier=identifier, | ||
chain_id_mapping=colab_id_to_chai_id, | ||
output_folder=chai_out_folder, | ||
) | ||
|
||
# Write the actual fasta input file | ||
write_fastas(sequences, (chai_out_folder / "chai.fasta").as_posix()) | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig(level=logging.INFO) | ||
app() |