forked from gizatechxyz/orion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request gizatechxyz#624 from chachaleo/feat/TreeEnsemble
feat: tree ensemble
- Loading branch information
Showing
9 changed files
with
1,077 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
22 changes: 22 additions & 0 deletions
22
docs/framework/operators/machine-learning/tree-ensemble/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# Tree Ensemble | ||
|
||
`TreeEnsembleTrait` provides a trait definition for tree ensemble problem. | ||
|
||
```rust | ||
use orion::operators::ml::TreeEnsembleTrait; | ||
``` | ||
|
||
### Data types | ||
|
||
Orion supports currently only fixed point data types for `TreeEnsembleTrait`. | ||
|
||
| Data type | dtype | | ||
| -------------------- | ------------------------------------------------------------- | | ||
| Fixed point (signed) | `TreeEnsembleTrait<FP8x23 \| FP16x16 \| FP64x64 \| FP32x32>` | | ||
|
||
|
||
*** | ||
|
||
| function | description | | ||
| --- | --- | | ||
| [`tree_ensemble.predict`](tree_ensemble.predict.md) | Returns the regressed values for each input in a batch. | |
139 changes: 139 additions & 0 deletions
139
docs/framework/operators/machine-learning/tree-ensemble/tree_ensemble.predict.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# TreeEnsemble::predict | ||
|
||
```rust | ||
fn predict(X: @Tensor<T>, | ||
nodes_splits: Tensor<T>, | ||
nodes_featureids: Span<usize>, | ||
nodes_modes: Span<MODE>, | ||
nodes_truenodeids: Span<usize>, | ||
nodes_falsenodeids: Span<usize>, | ||
nodes_trueleafs: Span<usize>, | ||
nodes_falseleafs: Span<usize>, | ||
leaf_targetids: Span<usize>, | ||
leaf_weights: Tensor<T>, | ||
tree_roots: Span<usize>, | ||
post_transform: POST_TRANSFORM, | ||
aggregate_function: AGGREGATE_FUNCTION, | ||
nodes_hitrates: Option<Tensor<T>>, | ||
nodes_missing_value_tracks_true: Option<Span<usize>>, | ||
membership_values: Option<Tensor<T>>, | ||
n_targets: usize | ||
) -> MutMatrix::<T>; | ||
``` | ||
|
||
Tree Ensemble operator. Returns the regressed values for each input in a batch. Inputs have dimensions [N, F] where N is the input batch size and F is the number of input features. Outputs have dimensions [N, num_targets] where N is the batch size and num_targets is the number of targets, which is a configurable attribute. | ||
|
||
## Args | ||
|
||
* `X`: Input 2D tensor. | ||
* `nodes_splits`: Thresholds to do the splitting on for each node with mode that is not 'BRANCH_MEMBER'. | ||
* `nodes_featureids`: Feature id for each node. | ||
* `nodes_modes`: The comparison operation performed by the node. This is encoded as an enumeration of 'NODE_MODE::LEQ', 'NODE_MODE::LT', 'NODE_MODE::GTE', 'NODE_MODE::GT', 'NODE_MODE::EQ', 'NODE_MODE::NEQ', and 'NODE_MODE::MEMBER' | ||
* `nodes_truenodeids`: If `nodes_trueleafs` is 0 (false) at an entry, this represents the position of the true branch node. | ||
* `nodes_falsenodeids`: If `nodes_falseleafs` is 0 (false) at an entry, this represents the position of the false branch node. | ||
* `nodes_trueleafs`: 1 if true branch is leaf for each node and 0 an interior node. | ||
* `nodes_falseleafs`: 1 if true branch is leaf for each node and 0 an interior node. | ||
* `leaf_targetids`: The index of the target that this leaf contributes to (this must be in range `[0, n_targets)`). | ||
* `leaf_weights`: The weight for each leaf. | ||
* `tree_roots`: Index into `nodes_*` for the root of each tree. The tree structure is derived from the branching of each node. | ||
* `post_transform`: Indicates the transform to apply to the score.One of 'POST_TRANSFORM::NONE', 'POST_TRANSFORM::SOFTMAX', 'POST_TRANSFORM::LOGISTIC', 'POST_TRANSFORM::SOFTMAX_ZERO' or 'POST_TRANSFORM::PROBIT' , | ||
* `aggregate_function`: Defines how to aggregate leaf values within a target. One of 'AGGREGATE_FUNCTION::AVERAGE', 'AGGREGATE_FUNCTION::SUM', 'AGGREGATE_FUNCTION::MIN', 'AGGREGATE_FUNCTION::MAX` defaults to 'AGGREGATE_FUNCTION::SUM' | ||
* `nodes_hitrates`: Popularity of each node, used for performance and may be omitted. | ||
* `nodes_missing_value_tracks_true`: For each node, define whether to follow the true branch (if attribute value is 1) or false branch (if attribute value is 0) in the presence of a NaN input feature. This attribute may be left undefined and the default value is false (0) for all nodes. | ||
* `membership_values`: Members to test membership of for each set membership node. List all of the members to test again in the order that the 'BRANCH_MEMBER' mode appears in `node_modes`, delimited by `NaN`s. Will have the same number of sets of values as nodes with mode 'BRANCH_MEMBER'. This may be omitted if the node doesn't contain any 'BRANCH_MEMBER' nodes. | ||
* `n_targets`: The total number of targets. | ||
|
||
|
||
## Returns | ||
|
||
* Output of shape [Batch Size, Number of targets] | ||
|
||
## Type Constraints | ||
|
||
`TreeEnsembleClassifier` and `X` must be fixed points | ||
|
||
## Examples | ||
|
||
```rust | ||
use orion::numbers::FP16x16; | ||
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; | ||
use orion::operators::ml::{TreeEnsembleTrait,POST_TRANSFORM, AGGREGATE_FUNCTION, NODE_MODE}; | ||
use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; | ||
use orion::numbers::NumberTrait; | ||
|
||
fn example_tree_ensemble_one_tree() -> MutMatrix::<FP16x16> { | ||
let mut shape = ArrayTrait::<usize>::new(); | ||
shape.append(3); | ||
shape.append(2); | ||
|
||
let mut data = ArrayTrait::new(); | ||
data.append(FP16x16 { mag: 78643, sign: false }); | ||
data.append(FP16x16 { mag: 222822, sign: false }); | ||
data.append(FP16x16 { mag: 7864, sign: true }); | ||
data.append(FP16x16 { mag: 108789, sign: false }); | ||
data.append(FP16x16 { mag: 271319, sign: false }); | ||
data.append(FP16x16 { mag: 115998, sign: false }); | ||
let mut X = TensorTrait::new(shape.span(), data.span()); | ||
|
||
let mut shape = ArrayTrait::<usize>::new(); | ||
shape.append(4); | ||
|
||
let mut data = ArrayTrait::new(); | ||
data.append(FP16x16 { mag: 342753, sign: false }); | ||
data.append(FP16x16 { mag: 794296, sign: false }); | ||
data.append(FP16x16 { mag: 801505, sign: true }); | ||
data.append(FP16x16 { mag: 472514, sign: false }); | ||
let leaf_weights = TensorTrait::new(shape.span(), data.span()); | ||
|
||
let mut shape = ArrayTrait::<usize>::new(); | ||
shape.append(3); | ||
|
||
let mut data = ArrayTrait::new(); | ||
data.append(FP16x16 { mag: 205783, sign: false }); | ||
data.append(FP16x16 { mag: 78643, sign: false }); | ||
data.append(FP16x16 { mag: 275251, sign: false }); | ||
let nodes_splits = TensorTrait::new(shape.span(), data.span()); | ||
|
||
let membership_values = Option::None; | ||
|
||
let n_targets = 2; | ||
let aggregate_function = AGGREGATE_FUNCTION::SUM; | ||
let nodes_missing_value_tracks_true = Option::None; | ||
let nodes_hitrates = Option::None; | ||
let post_transform = POST_TRANSFORM::NONE; | ||
|
||
let tree_roots: Span<usize> = array![0].span(); | ||
let nodes_modes: Span<MODE> = array![MODE::LEQ, MODE::LEQ, MODE::LEQ].span(); | ||
|
||
let nodes_featureids: Span<usize> = array![0, 0, 0].span(); | ||
let nodes_truenodeids: Span<usize> = array![1, 0, 1].span(); | ||
let nodes_trueleafs: Span<usize> = array![0, 1, 1].span(); | ||
let nodes_falsenodeids: Span<usize> = array![2, 2, 3].span(); | ||
let nodes_falseleafs: Span<usize> = array![0, 1, 1].span(); | ||
let leaf_targetids: Span<usize> = array![0, 1, 0, 1].span(); | ||
|
||
return TreeEnsembleTrait::predict( | ||
@X, | ||
nodes_splits, | ||
nodes_featureids, | ||
nodes_modes, | ||
nodes_truenodeids, | ||
nodes_falsenodeids, | ||
nodes_trueleafs, | ||
nodes_falseleafs, | ||
leaf_targetids, | ||
leaf_weights, | ||
tree_roots, | ||
post_transform, | ||
aggregate_function, | ||
nodes_hitrates, | ||
nodes_missing_value_tracks_true, | ||
membership_values, | ||
n_targets | ||
); | ||
} | ||
|
||
>>> [[ 5.23 0. ] | ||
[ 5.23 0. ] | ||
[ 0. 12.12]] | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
mod core; | ||
mod tree_ensemble_classifier; | ||
mod tree_ensemble_regressor; | ||
mod tree_ensemble; |
Oops, something went wrong.