forked from gizatechxyz/orion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
1,047 additions
and
36 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
23 changes: 23 additions & 0 deletions
23
docs/framework/operators/machine-learning/tree-ensemble-regressor/README.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Tree Ensemble Regressor | ||
|
||
`TreeEnsembleRegressorTrait` provides a trait definition for tree ensemble regressor problem. | ||
|
||
```rust | ||
use orion::operators::ml::TreeEnsembleRegressorTrait; | ||
``` | ||
|
||
### Data types | ||
|
||
Orion supports currently only fixed point data types for `TreeEnsembleRegressorTrait`. | ||
|
||
| Data type | dtype | | ||
| -------------------- | ------------------------------------------------------------- | | ||
| Fixed point (signed) | `TreeRegressorTrait<FP8x23 \| FP16x16 \| FP64x64 \| FP32x32>` | | ||
|
||
|
||
*** | ||
|
||
| function | description | | ||
| --- | --- | | ||
| [`tree_ensemble_regressor.predict`](tree_ensemble_regressor.predict.md) | Returns the regressed values for each input in N. | | ||
|
170 changes: 170 additions & 0 deletions
170
...ors/machine-learning/tree-ensemble-regressor/tree_ensemble_regressor.predict.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
# TreeEnsembleRegressor::predict | ||
|
||
```rust | ||
fn predict(ref self: TreeEnsembleRegressor<T>, X: Tensor<T>) -> (Span<usize>, MutMatrix::<T>); | ||
``` | ||
|
||
Tree Ensemble regressor. Returns the regressed values for each input in N. | ||
|
||
## Args | ||
|
||
* `self`: TreeEnsembleRegressor<T> - A TreeEnsembleRegressor object. | ||
* `X`: Input 2D tensor. | ||
|
||
## Returns | ||
|
||
* Regressed values for each input in N | ||
|
||
## Type Constraints | ||
|
||
`TreeEnsembleRegressor` and `X` must be fixed points | ||
|
||
## Examples | ||
|
||
```rust | ||
use orion::numbers::FP16x16; | ||
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor}; | ||
use orion::operators::ml::{NODE_MODES, TreeEnsembleAttributes, TreeEnsemble}; | ||
use orion::operators::ml::tree_ensemble::tree_ensemble_regressor::{ | ||
TreeEnsembleRegressor, POST_TRANSFORM, TreeEnsembleRegressorTrait, AGGREGATE_FUNCTION | ||
}; | ||
use orion::operators::matrix::{MutMatrix, MutMatrixImpl}; | ||
|
||
|
||
fn tree_ensemble_regressor_helper( | ||
agg: AGGREGATE_FUNCTION | ||
) -> (TreeEnsembleRegressor<FP16x16>, Tensor<FP16x16>) { | ||
let n_targets: usize = 1; | ||
let aggregate_function = agg; | ||
let nodes_falsenodeids: Span<usize> = array![4, 3, 0, 0, 0, 2, 0, 4, 0, 0].span(); | ||
let nodes_featureids: Span<usize> = array![0, 2, 0, 0, 0, 0, 0, 2, 0, 0].span(); | ||
let nodes_missing_value_tracks_true: Span<usize> = array![0, 0, 0, 0, 0, 0, 0, 0, 0, 0].span(); | ||
let nodes_modes: Span<NODE_MODES> = array![ | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::BRANCH_LEQ, | ||
NODE_MODES::LEAF, | ||
NODE_MODES::LEAF | ||
] | ||
.span(); | ||
let nodes_nodeids: Span<usize> = array![0, 1, 2, 3, 4, 0, 1, 2, 3, 4].span(); | ||
let nodes_treeids: Span<usize> = array![0, 0, 0, 0, 0, 1, 1, 1, 1, 1].span(); | ||
let nodes_truenodeids: Span<usize> = array![1, 2, 0, 0, 0, 1, 0, 3, 0, 0].span(); | ||
let nodes_values: Span<FP16x16> = array![ | ||
FP16x16 { mag: 17462, sign: false }, | ||
FP16x16 { mag: 40726, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 47240, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 36652, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 0, sign: false } | ||
] | ||
.span(); | ||
let target_ids: Span<usize> = array![0, 0, 0, 0, 0, 0].span(); | ||
let target_nodeids: Span<usize> = array![2, 3, 4, 1, 3, 4].span(); | ||
let target_treeids: Span<usize> = array![0, 0, 0, 1, 1, 1].span(); | ||
let target_weights: Span<FP16x16> = array![ | ||
FP16x16 { mag: 5041, sign: false }, | ||
FP16x16 { mag: 32768, sign: false }, | ||
FP16x16 { mag: 32768, sign: false }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 18724, sign: false }, | ||
FP16x16 { mag: 32768, sign: false } | ||
] | ||
.span(); | ||
|
||
let base_values: Option<Span<FP16x16>> = Option::None; | ||
let post_transform = POST_TRANSFORM::NONE; | ||
|
||
let tree_ids: Span<usize> = array![0, 1].span(); | ||
|
||
let mut root_index: Felt252Dict<usize> = Default::default(); | ||
root_index.insert(0, 0); | ||
root_index.insert(1, 5); | ||
|
||
let mut node_index: Felt252Dict<usize> = Default::default(); | ||
node_index | ||
.insert(2089986280348253421170679821480865132823066470938446095505822317253594081284, 0); | ||
node_index | ||
.insert(2001140082530619239661729809084578298299223810202097622761632384561112390979, 1); | ||
node_index | ||
.insert(2592670241084192212354027440049085852792506518781954896144296316131790403900, 2); | ||
node_index | ||
.insert(2960591271376829378356567803618548672034867345123727178628869426548453833420, 3); | ||
node_index | ||
.insert(458933264452572171106695256465341160654132084710250671055261382009315664425, 4); | ||
node_index | ||
.insert(1089549915800264549621536909767699778745926517555586332772759280702396009108, 5); | ||
node_index | ||
.insert(1321142004022994845681377299801403567378503530250467610343381590909832171180, 6); | ||
node_index | ||
.insert(2592987851775965742543459319508348457290966253241455514226127639100457844774, 7); | ||
node_index | ||
.insert(2492755623019086109032247218615964389726368532160653497039005814484393419348, 8); | ||
node_index | ||
.insert(1323616023845704258113538348000047149470450086307731200728039607710316625916, 9); | ||
|
||
let atts = TreeEnsembleAttributes { | ||
nodes_falsenodeids, | ||
nodes_featureids, | ||
nodes_missing_value_tracks_true, | ||
nodes_modes, | ||
nodes_nodeids, | ||
nodes_treeids, | ||
nodes_truenodeids, | ||
nodes_values | ||
}; | ||
|
||
let mut ensemble: TreeEnsemble<FP16x16> = TreeEnsemble { | ||
atts, tree_ids, root_index, node_index | ||
}; | ||
|
||
let mut regressor: TreeEnsembleRegressor<FP16x16> = TreeEnsembleRegressor { | ||
ensemble, | ||
target_ids, | ||
target_nodeids, | ||
target_treeids, | ||
target_weights, | ||
base_values, | ||
n_targets, | ||
aggregate_function, | ||
post_transform | ||
}; | ||
|
||
let mut X: Tensor<FP16x16> = TensorTrait::new( | ||
array![3, 3].span(), | ||
array![ | ||
FP16x16 { mag: 32768, sign: true }, | ||
FP16x16 { mag: 26214, sign: true }, | ||
FP16x16 { mag: 19660, sign: true }, | ||
FP16x16 { mag: 13107, sign: true }, | ||
FP16x16 { mag: 6553, sign: true }, | ||
FP16x16 { mag: 0, sign: false }, | ||
FP16x16 { mag: 6553, sign: false }, | ||
FP16x16 { mag: 13107, sign: false }, | ||
FP16x16 { mag: 19660, sign: false }, | ||
] | ||
.span() | ||
); | ||
|
||
(regressor, X) | ||
} | ||
|
||
fn test_tree_ensemble_regressor_SUM() -> MutMatrix::<FP16x16> { | ||
let (mut regressor, X) = tree_ensemble_regressor_helper(AGGREGATE_FUNCTION::SUM); | ||
let mut res = TreeEnsembleRegressorTrait::predict(ref regressor, X); | ||
res | ||
} | ||
>>> | ||
|
||
[0.5769, 0.5769, 0.5769] | ||
|
||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
mod core; | ||
mod tree_ensemble_classifier; | ||
mod tree_ensemble_regressor; |
Oops, something went wrong.