-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
869 additions
and
184 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,365 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# The archive\n", | ||
"\n", | ||
"When you fit a brush estimator, two new attributes are created: `best_estimator_` and `archive_`.\n", | ||
"\n", | ||
"If you set `use_arch` to `True` when instantiating the estimator, then it will store the pareto front as a list in `archive_`. This pareto front is always created with individuals from the final population that are not dominated in objectives **error** and **complexity**.\n", | ||
"\n", | ||
"In case you need more flexibility, the archive will contain the entire final population if `use_arch` is `False`, and you can iterate through this list to select individuals with different criteria. It is also good to remind that Brush supports different optimization objectives using the argument `objectives`.\n", | ||
"\n", | ||
"Each element from the archive is a serialized individual (JSON object)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"from pybrush import BrushClassifier\n", | ||
"\n", | ||
"# load data\n", | ||
"df = pd.read_csv('../examples/datasets/d_analcatdata_aids.csv')\n", | ||
"X = df.drop(columns='target')\n", | ||
"y = df['target']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Completed 100% [====================]\n", | ||
"score: 0.7\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"est = BrushClassifier(\n", | ||
" functions=['SplitBest','Add','Mul','Sin','Cos','Exp','Logabs'],\n", | ||
" use_arch=True,\n", | ||
" max_gens=100,\n", | ||
" verbosity=1\n", | ||
")\n", | ||
"\n", | ||
"est.fit(X,y)\n", | ||
"y_pred = est.predict(X)\n", | ||
"print('score:', est.score(X,y))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"You can see individuals from archive using the index:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"5\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'fitness': {'complexity': 80,\n", | ||
" 'crowding_dist': 0.0,\n", | ||
" 'dcounter': 0,\n", | ||
" 'depth': 3,\n", | ||
" 'dominated': [],\n", | ||
" 'loss': 0.5091069936752319,\n", | ||
" 'loss_v': 0.5091069936752319,\n", | ||
" 'rank': 1,\n", | ||
" 'size': 12,\n", | ||
" 'values': [0.5091069936752319, 12.0],\n", | ||
" 'weights': [-1.0, -1.0],\n", | ||
" 'wvalues': [-0.5091069936752319, -12.0]},\n", | ||
" 'id': 10060,\n", | ||
" 'objectives': ['error', 'size'],\n", | ||
" 'parent_id': [9628],\n", | ||
" 'program': {'Tree': [{'W': 15890.5,\n", | ||
" 'arg_types': ['ArrayF', 'ArrayF'],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': 'AIDS',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': False,\n", | ||
" 'name': 'SplitBest',\n", | ||
" 'node_type': 'SplitBest',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 9996486434638833164,\n", | ||
" 'sig_hash': 10001460114883919497},\n", | ||
" {'W': 1.0,\n", | ||
" 'arg_types': ['ArrayF'],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': '',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': False,\n", | ||
" 'name': 'Logabs',\n", | ||
" 'node_type': 'Logabs',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 10617925524997611780,\n", | ||
" 'sig_hash': 13326223354425868050},\n", | ||
" {'W': 2.7182815074920654,\n", | ||
" 'arg_types': [],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': 'Cf',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': False,\n", | ||
" 'name': 'Constant',\n", | ||
" 'node_type': 'Constant',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 509529941281334733,\n", | ||
" 'sig_hash': 17717457037689164349},\n", | ||
" {'W': 1572255.5,\n", | ||
" 'arg_types': ['ArrayF', 'ArrayF'],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': 'Total',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': False,\n", | ||
" 'name': 'SplitBest',\n", | ||
" 'node_type': 'SplitBest',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 9996486434638833164,\n", | ||
" 'sig_hash': 10001460114883919497},\n", | ||
" {'W': 0.2222222238779068,\n", | ||
" 'arg_types': [],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': 'MeanLabel',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': True,\n", | ||
" 'name': 'MeanLabel',\n", | ||
" 'node_type': 'MeanLabel',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 509529941281334733,\n", | ||
" 'sig_hash': 17717457037689164349},\n", | ||
" {'W': 0.5217871069908142,\n", | ||
" 'arg_types': [],\n", | ||
" 'center_op': True,\n", | ||
" 'feature': 'Cf',\n", | ||
" 'fixed': False,\n", | ||
" 'is_weighted': False,\n", | ||
" 'name': 'Constant',\n", | ||
" 'node_type': 'Constant',\n", | ||
" 'prob_change': 1.0,\n", | ||
" 'ret_type': 'ArrayF',\n", | ||
" 'sig_dual_hash': 509529941281334733,\n", | ||
" 'sig_hash': 17717457037689164349}],\n", | ||
" 'is_fitted_': True}}" | ||
] | ||
}, | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"print(len(est.archive_[0]))\n", | ||
"\n", | ||
"est.archive_[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"And you can call `predict` (or `predict_proba`, if your `est` is an instance of `BrushClassifier`) with the entire archive:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[{'id': 10060,\n", | ||
" 'y_pred': array([False, True, True, True, True, False, True, True, True,\n", | ||
" False, True, True, True, True, False, True, True, True,\n", | ||
" True, True, True, True, True, True, True, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, True, False, True, True, True, True, True,\n", | ||
" True, True, True, True, True])},\n", | ||
" {'id': 9789,\n", | ||
" 'y_pred': array([False, True, True, True, True, False, True, True, True,\n", | ||
" False, True, True, True, True, False, True, True, True,\n", | ||
" True, True, True, True, True, True, True, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, True, False, True, True, True, True, True,\n", | ||
" True, True, True, True, True])},\n", | ||
" {'id': 10049,\n", | ||
" 'y_pred': array([False, True, True, True, True, False, True, True, True,\n", | ||
" False, False, True, True, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False])},\n", | ||
" {'id': 4384,\n", | ||
" 'y_pred': array([False, True, True, True, True, False, True, True, True,\n", | ||
" False, False, True, True, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False])},\n", | ||
" {'id': 9692,\n", | ||
" 'y_pred': array([ True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True])},\n", | ||
" {'id': 9552,\n", | ||
" 'y_pred': array([False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False, False, False, False, False,\n", | ||
" False, False, False, False, False])}]" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"est.predict_archive(X)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[{'id': 10060,\n", | ||
" 'y_pred': array([0.22222222, 0.9999999 , 0.9999999 , 0.9999999 , 0.9999999 ,\n", | ||
" 0.22222222, 0.9999999 , 0.9999999 , 0.9999999 , 0.22222222,\n", | ||
" 0.5217871 , 0.9999999 , 0.9999999 , 0.5217871 , 0.22222222,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.22222222, 0.22222222,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.22222222, 0.22222222,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.5217871 , 0.22222222,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ],\n", | ||
" dtype=float32)},\n", | ||
" {'id': 9789,\n", | ||
" 'y_pred': array([0.22222222, 0.99994993, 0.99994993, 0.99994993, 0.99994993,\n", | ||
" 0.22222222, 0.99994993, 0.99994993, 0.99994993, 0.22222222,\n", | ||
" 0.5217871 , 0.99994993, 0.99994993, 0.5217871 , 0.22222222,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.22222222, 0.22222222,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.22222222, 0.22222222,\n", | ||
" 0.22222222, 0.22222222, 0.22222222, 0.5217871 , 0.22222222,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ,\n", | ||
" 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 , 0.5217871 ],\n", | ||
" dtype=float32)},\n", | ||
" {'id': 10049,\n", | ||
" 'y_pred': array([0.39024392, 0.9999999 , 0.9999999 , 0.9999999 , 0.9999999 ,\n", | ||
" 0.39024392, 0.9999999 , 0.9999999 , 0.9999999 , 0.39024392,\n", | ||
" 0.39024392, 0.9999999 , 0.9999999 , 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392],\n", | ||
" dtype=float32)},\n", | ||
" {'id': 4384,\n", | ||
" 'y_pred': array([0.39024392, 0.9999522 , 0.9999522 , 0.9999522 , 0.9999522 ,\n", | ||
" 0.39024392, 0.9999522 , 0.9999522 , 0.9999522 , 0.39024392,\n", | ||
" 0.39024392, 0.9999522 , 0.9999522 , 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392,\n", | ||
" 0.39024392, 0.39024392, 0.39024392, 0.39024392, 0.39024392],\n", | ||
" dtype=float32)},\n", | ||
" {'id': 9692,\n", | ||
" 'y_pred': array([0.5317098 , 0.93985564, 0.9835824 , 0.8686745 , 0.68970597,\n", | ||
" 0.53089285, 0.8455727 , 0.9291562 , 0.7663612 , 0.6237519 ,\n", | ||
" 0.5169323 , 0.7368382 , 0.794476 , 0.63628834, 0.5578266 ,\n", | ||
" 0.50047225, 0.50908357, 0.51443684, 0.506959 , 0.50320625,\n", | ||
" 0.5003231 , 0.50484663, 0.5051821 , 0.50173986, 0.5005965 ,\n", | ||
" 0.5060892 , 0.5592239 , 0.56642807, 0.5267187 , 0.5222307 ,\n", | ||
" 0.5185086 , 0.64804167, 0.68591666, 0.5714386 , 0.5314499 ,\n", | ||
" 0.50612646, 0.5576549 , 0.5636914 , 0.5241404 , 0.5113072 ,\n", | ||
" 0.50007457, 0.5010315 , 0.5013173 , 0.50085753, 0.50068355,\n", | ||
" 0.5000373 , 0.50096935, 0.50095695, 0.5003852 , 0.500174 ],\n", | ||
" dtype=float32)},\n", | ||
" {'id': 9552,\n", | ||
" 'y_pred': array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,\n", | ||
" 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,\n", | ||
" 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,\n", | ||
" 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5],\n", | ||
" dtype=float32)}]" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"est.predict_proba_archive(X)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "brush", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,5 +13,7 @@ data | |
search_space | ||
working_with_programs | ||
json | ||
saving_loading_populations | ||
archive | ||
deap | ||
``` |
Oops, something went wrong.