Skip to content

Code for the πŸ₯‰ ViV1T submission in the NeurIPS Sensorium 2023 challenge.

License

Notifications You must be signed in to change notification settings

bryanlimy/ViV1T

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

ViV1T: dynamic mouse V1 response prediction using a factorized spatiotemporal Transformer

Codebase for the ViV1T (team dunedin) submission in the NeurIPS Sensorium 2023 challenge which came πŸ₯‰ place.

ViV1T architecture

Contributors: Bryan M. Li, Wolf De Wulf, Nina Kudryashova, Matthias Hennig, Nathalie L. Rochefort, Arno Onken.

If you use this work, please consider citing:

@inproceedings{
    turishcheva2024retrospective,
    title={Retrospective for the Dynamic Sensorium Competition for predicting large-scale mouse primary visual cortex activity from videos},
    author={Polina Turishcheva and Paul G. Fahey and Michaela Vystr{\v{c}}ilov{\'a} and Laura Hansel and Rachel E Froebe and Kayla Ponder and Yongrong Qiu and Konstantin Friedrich Willeke and Mohammad Bashiri and Ruslan Baikulov and Yu Zhu and Lei Ma and Shan Yu and Tiejun Huang and Bryan M. Li and Wolf De Wulf and Nina Kudryashova and Matthias H. Hennig and Nathalie Rochefort and Arno Onken and Eric Wang and Zhiwei Ding and Andreas S. Tolias and Fabian H. Sinz and Alexander S Ecker},
    booktitle={The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    year={2024},
    url={https://openreview.net/forum?id=gViJjwRUlM}
}

Acknowledgments

We sincerely thank Turishcheva et al. for organizing the Sensorium 2023 challenge and for making their high-quality large-scale mouse V1 recordings publicly available. The structure of this codebase is based on and inspired by bryanlimy/V1T, ecker-lab/sensorium_2023, sinzlab/neuralpredictors and sinzlab/nnfabrik.

File structure

The codebase repository has the following structure.

  • Check data/README.md for more information about the dataset and how to store them.
  • runs/ contains model checkpoints and their training logs.
.
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md
β”œβ”€β”€ assets
β”‚Β Β  └── viv1t.jpg
β”œβ”€β”€ data
β”‚Β Β  β”œβ”€β”€ README.md
β”‚Β Β  └── sensorium
β”‚Β Β      β”œβ”€β”€ dynamic29156-11-10-Video-8744edeac3b4d1ce16b680916b5267ce
β”‚Β Β      β”œβ”€β”€ dynamic29228-2-10-Video-8744edeac3b4d1ce16b680916b5267ce
β”‚Β Β      β”œβ”€β”€ dynamic29234-6-9-Video-8744edeac3b4d1ce16b680916b5267ce
β”‚Β Β      β”œβ”€β”€ dynamic29513-3-5-Video-8744edeac3b4d1ce16b680916b5267ce
β”‚Β Β      β”œβ”€β”€ dynamic29514-2-9-Video-8744edeac3b4d1ce16b680916b5267ce
β”‚Β Β      β”œβ”€β”€ dynamic29515-10-12-Video-9b4f6a1a067fe51e15306b9628efea20
β”‚Β Β      β”œβ”€β”€ dynamic29623-4-9-Video-9b4f6a1a067fe51e15306b9628efea20
β”‚Β Β      β”œβ”€β”€ dynamic29647-19-8-Video-9b4f6a1a067fe51e15306b9628efea20
β”‚Β Β      β”œβ”€β”€ dynamic29712-5-9-Video-9b4f6a1a067fe51e15306b9628efea20
β”‚Β Β      └── dynamic29755-2-8-Video-9b4f6a1a067fe51e15306b9628efea20
β”œβ”€β”€ demo.ipynb
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ requirements.txt
β”œβ”€β”€ runs
β”‚Β Β  β”œβ”€β”€ viv1t_001
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ args.yaml
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ ckpt
β”‚Β Β  β”‚Β Β  β”‚Β Β  └── model_state.pt
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ evaluation.yaml
β”‚Β Β  β”‚Β Β  β”œβ”€β”€ model.txt
β”‚Β Β  β”‚Β Β  └── output.log
β”‚Β Β  β”œβ”€β”€ viv1t_002
β”‚Β Β  β”œβ”€β”€ viv1t_003
β”‚Β Β  β”œβ”€β”€ viv1t_004
β”‚Β Β  └── viv1t_005
β”œβ”€β”€ src
β”‚Β Β  └── viv1t
β”‚Β Β      β”œβ”€β”€ __init__.py
β”‚Β Β      β”œβ”€β”€ criterions.py
β”‚Β Β      β”œβ”€β”€ data
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ constants.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ cycle_ds.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ data.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ statistics.py
β”‚Β Β      β”‚Β Β  └── utils.py
β”‚Β Β      β”œβ”€β”€ metrics.py
β”‚Β Β      β”œβ”€β”€ model
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ core
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ core.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ factorized_baseline.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  └── vivit.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ critic.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ helper.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ model.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ modulators
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ gru.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ mlp.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ mlp_v2.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ mlp_v3.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  └── modulator.py
β”‚Β Β      β”‚Β Β  β”œβ”€β”€ readout
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ factorized.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ gaussian2d.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  β”œβ”€β”€ random.py
β”‚Β Β      β”‚Β Β  β”‚Β Β  └── readout.py
β”‚Β Β      β”‚Β Β  └── shifter.py
β”‚Β Β      β”œβ”€β”€ scheduler.py
β”‚Β Β      └── utils
β”‚Β Β          β”œβ”€β”€ __init__.py
β”‚Β Β          β”œβ”€β”€ bufferdict.py
β”‚Β Β          β”œβ”€β”€ estimate_batch_size.py
β”‚Β Β          β”œβ”€β”€ logger.py
β”‚Β Β          β”œβ”€β”€ utils.py
β”‚Β Β          └── yaml.py
└── train.py

Installation

Create conda environment viv1t in Python 3.11, install PyTorch 2.1 and the viv1t package.

conda create -n viv1t python=3.11
conda activate viv1t
pip install torch==2.1 torchvision torchaudio
# conda install pytorch=2.1 torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -e .

Demo

demo.ipynb contains a demo notebook to initialize, restore and inference the model, as well as generating the parquet files that were used in the challenge submission.

Train model

  • The following command trains the ViV1T core and Gaussian2d readout model on all 10 mice and saves results to --output_dir=runs/vivit/test:
    python train.py --data=data/sensorium --output_dir=runs/vivit/test --transform_mode=2 --crop_frame=140 --ds_mode=3 --core=vivit --core_parallel_attention --grad_checkpointing=0 --output_mode=1 --readout=gaussian2d --batch_size=6 --clear_output_dir
  • Training progress will be printed in the console and also recorded in <output_dir>/output.log and model checkpoint is saved periodically in <output_dir>/ckpt/model_stat.pt.
  • A single NVIDIA A100 40GB was used to train the model.
  • Check --help for all available arguments
    > python train.py --help
    
    usage: train.py [-h] [--data DATA] --output_dir OUTPUT_DIR --ds_mode {0,1,2,3} [--stat_mode {0,1}] --transform_mode
                    {0,1,2,3,4} [--center_crop CENTER_CROP] [--mouse_ids MOUSE_IDS [MOUSE_IDS ...]] [--limit_data LIMIT_DATA]
                    [--cache_data] [--num_workers NUM_WORKERS] [--epochs EPOCHS] [--batch_size BATCH_SIZE]
                    [--micro_batch_size MICRO_BATCH_SIZE] [--crop_frame CROP_FRAME] [--device {cpu,cuda,mps}] [--seed SEED]
                    [--deterministic] [--precision {32,bf16}] [--grad_checkpointing {0,1}] [--restore RESTORE]
                    [--adam_beta1 ADAM_BETA1] [--adam_beta2 ADAM_BETA2] [--adam_eps ADAM_EPS] [--criterion CRITERION]
                    [--ds_scale {0,1}] [--grad_norm GRAD_NORM] [--save_plots] [--dpi DPI] [--format {pdf,svg,png}]
                    [--wandb WANDB] [--wandb_id WANDB_ID] [--clear_output_dir] [--verbose {0,1,2,3}] --core CORE
                    [--core_compile] --readout READOUT [--shifter_mode {0,1,2}] [--modulator_mode {0,1,2,3,4}]
                    [--critic_mode {0,1}] [--output_mode {0,1,2}]
    
    options:
      -h, --help            show this help message and exit
      --data DATA           path to directory where the dataset is stored.
      --output_dir OUTPUT_DIR
                            path to directory to log training performance and model checkpoint.
      --ds_mode {0,1,2,3}   0: train on the 5 original mice
                            1: train on the 5 new mice
                            2: train on all 10 mice jointly
                            3: train on all 10 mice with all tiers from the 5 original mice
      --stat_mode {0,1}     data statistics to use:
                            0: use the provided statistics
                            1: compute statistics from the training set
      --transform_mode {0,1,2,3,4}
                            data transformation and preprocessing
                            0: apply no transformation
                            1: standard response using statistics over trial
                            2: normalize response using statistics over trial
                            3: standard response using statistics over trial and time
                            4: normalize response using statistics over trial and time
      --center_crop CENTER_CROP
                            center crop the video frame to center_crop percentage.
      --mouse_ids MOUSE_IDS [MOUSE_IDS ...]
                            Mouse to use for training.
      --limit_data LIMIT_DATA
                            limit the number of training samples.
      --cache_data          cache data in memory in MovieDataset.
      --num_workers NUM_WORKERS
                            number of workers for DataLoader.
      --epochs EPOCHS       maximum epochs to train the model.
      --batch_size BATCH_SIZE
      --micro_batch_size MICRO_BATCH_SIZE
                            micro batch size to train the model. if the model is being trained on CUDA device and micro batch size 0 is provided, then automatically increase micro batch size until OOM.
      --crop_frame CROP_FRAME
                            number of frames to take from each trial.
      --device {cpu,cuda,mps}
                            Device to use for computation. use the best available device if --device is not specified.
      --seed SEED
      --deterministic       use deterministic algorithms in PyTorch
      --precision {32,bf16}
      --grad_checkpointing {0,1}
                            Enable gradient checkpointing for supported models if set to 1. If None is provided, then enable by default if CUDA is detected.
      --restore RESTORE     pretrained model to restore from before training begins.
      --adam_beta1 ADAM_BETA1
      --adam_beta2 ADAM_BETA2
      --adam_eps ADAM_EPS
      --criterion CRITERION
                            criterion (loss function) to use.
      --ds_scale {0,1}      scale loss by the size of the dataset
      --grad_norm GRAD_NORM
                            max value for gradient norm clipping. set None to disable
      --save_plots          save plots to --output_dir
      --dpi DPI             matplotlib figure DPI
      --format {pdf,svg,png}
                            file format when --save_plots
      --wandb WANDB         wandb group name, disable wandb logging if not provided.
      --wandb_id WANDB_ID   wandb run ID to resume from.
      --clear_output_dir    overwrite content in --output_dir
      --verbose {0,1,2,3}
      --core CORE           The core module to use.
      --core_compile        compile core module with inductor backend via torch.compile
      --readout READOUT     The readout module to use.
      --shifter_mode {0,1,2}
                            0: disable shifter
                            1: learn shift from pupil center
                            2: learn shift from pupil center and behavior variables
      --modulator_mode {0,1,2,3,4}
                            0: disable modulator
                            1: MLP Modulator
                            2: GRU Modulator
                            3: MLP-v2 Modulator
                            4: MLP-v3 Modulator
      --critic_mode {0,1}
      --output_mode {0,1,2}
                            Output activation:
                            0: ELU + 1 activation
                            1: Exponential activation
                            2: SoftPlus activation