Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

get_cmems update #52

Merged
merged 3 commits into from
Nov 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion wavy/insitu_collectors.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,8 @@ def get_remote_files_cmems(**kwargs):

# check if search str template
file_search_template = cfg.download['ftp']\
.get('search_str', '%Y%m%dT')
.get('search_str', '%Y%m%dT').replace('name',
name)

# credentials
server = insitu_dict[product]['download']['ftp']['server']
Expand Down Expand Up @@ -137,6 +138,7 @@ def get_remote_files_cmems(**kwargs):
matchingtmp = [s for s in content
if tmpdate_new.strftime(file_search_template)
in s]

tmplst = tmplst + matchingtmp
tmpdate_new = tmpdate_new + timedelta(minutes=twin)
matching = np.unique(tmplst)
Expand Down
75 changes: 67 additions & 8 deletions wavy/insitu_readers.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
import dotenv
import xarray as xr
import logging
#logging.basicConfig(level=logging.DEBUG)
# logging.basicConfig(level=logging.DEBUG)
logging.basicConfig(level=30)
logger = logging.getLogger(__name__)

Expand All @@ -44,10 +44,12 @@
variables_frost = load_or_default('variables_frost.yaml')
# ---------------------------------------------------------------------#


def get_typeid(insitu_dict: dict, s: str) -> str:
typeid = insitu_dict[s].get('typeids', 22)
return typeid


def make_frost_reference_time_period(sdate, edate):
sdate = parse_date(sdate)
edate = parse_date(edate)
Expand All @@ -56,9 +58,10 @@ def make_frost_reference_time_period(sdate, edate):
edate.strftime(formatstr))
return refstr


def call_frost_api(
sdate: datetime, edate: datetime,
nID: str, varstr: str, sensor: str) -> 'requests.models.Response':
sdate: datetime, edate: datetime,
nID: str, varstr: str, sensor: str) -> 'requests.models.Response':
"""
make frost api call
"""
Expand All @@ -82,6 +85,7 @@ def call_frost_api(
else:
return r


def call_frost_api_v1(
nID: str, varstr: str, frost_reference_time: str,
client_id: str, sensor: str)\
Expand All @@ -104,6 +108,7 @@ def call_frost_api_v1(
print('parameters forst api call: ', parameters)
return requests.get(endpoint, parameters, auth=(client_id, client_id))


def find_preferred(idx, sensors, refs, pref):
sensorsU = np.unique(sensors)
preferred_idx = []
Expand All @@ -118,6 +123,7 @@ def find_preferred(idx, sensors, refs, pref):
preferred_idx.append(list(idx_1)[0])
return preferred_idx


def get_frost_df_v1(r: 'requests.models.Response')\
-> 'pandas.core.frame.DataFrame':
"""
Expand Down Expand Up @@ -223,6 +229,7 @@ def get_frost(**kwargs):
ds = build_xr_ds(var_tuple, varnames)
return ds


def get_nc_thredds(**kwargs):
sd = kwargs.get('sd')
ed = kwargs.get('ed')
Expand All @@ -248,6 +255,7 @@ def get_nc_thredds(**kwargs):
var_sliced = ds_sliced[[ncvar, lonstr, latstr]]
return var_sliced


def get_nc_thredds_static_coords(**kwargs):
sd = kwargs.get('sd')
ed = kwargs.get('ed')
Expand Down Expand Up @@ -294,6 +302,7 @@ def get_nc_thredds_static_coords(**kwargs):

return ds_combined


def get_nc_thredds_static_coords_single_file(**kwargs):
sd = kwargs.get('sd')
ed = kwargs.get('ed')
Expand Down Expand Up @@ -340,6 +349,7 @@ def get_nc_thredds_static_coords_single_file(**kwargs):

return ds_combined


def get_cmems(**kwargs):
sd = kwargs.get('sd')
ed = kwargs.get('ed')
Expand Down Expand Up @@ -376,19 +386,20 @@ def get_cmems(**kwargs):

# builds the dictionary given as an argument to
dict_var = {coord: ds.coords[coord].values
for coord in list(ds.coords)}
for coord in list(ds.coords) if coord
in [lonstr, latstr, timestr]}

dict_var.update({var: ds[[var]]
.isel({fixed_dim_str: fixed_dim_idx})
.to_array().values[0] for var in list(ds.data_vars)})
dict_var.update({var: rebuild_split_variable(ds,
fixed_dim_str, var)
for var in list(ds.data_vars)})

# build an xr.dataset with timestr as the only coordinate
# using build_xr_ds function
ds_list.append(build_xr_ds_cmems(dict_var, timestr))

except Exception as e:
logger.exception(e)

ds_combined = xr.concat(ds_list, timestr,
coords='minimal',
data_vars='minimal',
Expand All @@ -401,12 +412,60 @@ def get_cmems(**kwargs):

return ds_sliced


def rebuild_split_variable(ds, fixed_dim_str, var):
'''
Gather values of a given variable, for which
values are split between several levels of
a given dimension of a dataset.

Args:
ds (xarray dataset): dataset
fixed_dim_str (string): name of the dimension
var (string): name of the variable

Returns:
1D numpy array, returns the complete variable
serie of values on a single dimension
'''
lvl_nb = len(ds[fixed_dim_str].data)

if lvl_nb==1:
ts = list(ds.isel({fixed_dim_str: 0})[var].data)

elif lvl_nb > 1:

lvl_not_nan = []
for i in range(lvl_nb):

if not np.isnan(ds.isel({fixed_dim_str: i})[var].data).all():
lvl_not_nan.append(i)

if len(lvl_not_nan)==1:
ts= list(ds.isel({fixed_dim_str: lvl_not_nan[0]})[var].data)

else:

ts = ds.isel({fixed_dim_str: 0})[var].data
dict_not_nan = {}
for i in range(1, lvl_nb):

nan_val_tmp = np.isnan(ds.isel({fixed_dim_str: i})[var].data)
not_nan_idx = [j for j in range(len(nan_val_tmp))
if not nan_val_tmp[j]]
ts[not_nan_idx] = ds.isel({fixed_dim_str: i})[var].data[not_nan_idx]

return np.array(ts, dtype='f')


def build_xr_ds_cmems(dict_var, var_name_ref):

ds = xr.Dataset({
var_name: xr.DataArray(
data=dict_var[var_name],
dims=[var_name_ref],
coords={var_name_ref: dict_var[var_name_ref]}
) for var_name in dict_var.keys()},
attrs={'title': 'wavy dataset'})

return ds