Skip to content

Commit

Permalink
Merge pull request #53 from bohlinger/tmp
Browse files Browse the repository at this point in the history
Added filter_runmean function and test
  • Loading branch information
bohlinger authored Nov 22, 2023
2 parents 50fc9fb + 3eed56a commit d247d73
Show file tree
Hide file tree
Showing 2 changed files with 71 additions and 46 deletions.
73 changes: 30 additions & 43 deletions tests/test_filtermod.py
Original file line number Diff line number Diff line change
@@ -1,43 +1,30 @@
#import pytest
#from datetime import datetime, timedelta
#import yaml
#import numpy as np
#import os
#from copy import deepcopy
#
#from wavy.insitumod import insitu_class as ic
#from wavy.filtermod import apply_land_mask
#
#sd = "2021-8-2 01"
#ed = "2021-8-3 12"
#
##ico = ic(nID,sensor,sd,ed)
##test_dict = deepcopy(ico.vars())
#
##@pytest.fixture
##def test_data():
## return os.path.abspath(os.path.join(\
## os.path.dirname( __file__ ),'data'))
#
#def test_landmask():
# vardict = { 'latitude':[60.12,62.24, 64.08,65.08, 67.65,68.95],
# 'longitude':[-23.47,-21.54, -19.32,-17.8, -13.97,-10.99]}
# d,m = apply_land_mask(vardict)
# assert len(m[m==False]) == int(2)
#
##def test_cleaners():
## nID = 'D_Breisundet_wave'
## sensor = 'wavescan'
## ico = ic(nID,sensor,sd,ed,priorOp='square',cleaner='linearGAM',postOp='root',date_incr=1,filterData=True)
## assert len(vars(ico).keys()) == 16
## assert 'filter' in vars(ico).keys()
## assert 'filterSpecs' in vars(ico).keys()
#
#def test_smoothers():
# nID = 'D_Breisundet_wave'
# sensor = 'wavescan'
# ico = ic(nID,sd,ed,smoother='blockMean',date_incr=1,filterData=True,sensor=sensor)
# assert len(vars(ico).keys()) == 16
# assert 'filter' in vars(ico).keys()
# assert 'filterSpecs' in vars(ico).keys()
#
import pytest
from datetime import datetime, timedelta
import yaml
import numpy as np
import os
from copy import deepcopy
from wavy.insitu_module import insitu_class as ic


def test_filter_runmean(test_data):
varalias = 'Hs' # default
sd = "2023-8-20 00"
ed = "2023-8-21 00"
nID = 'MO_Draugen_daily'
name = 'Draugen'
ico = ic(nID=nID, sd=sd, ed=ed, varalias=varalias, name=name)
print(ico)
print(vars(ico).keys())

ico = ico.populate(path=str(test_data/"insitu/daily/Draugen"))
new = ico.filter_runmean(window=3,
chunk_min=3,
sampling_rate_Hz=1/600)
print(new.vars.time)
print(new.vars.Hs)
assert len(new.vars.time) == 6
assert not all(np.isnan(v) for v in ico.vars['Hs'])
print(ico.vars.Hs[1:4])
print(np.mean(ico.vars.Hs[1:4]))
assert new.vars.Hs[2] == np.mean(ico.vars.Hs[1:4])
44 changes: 41 additions & 3 deletions wavy/filtermod.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def filter_distance_to_coast(self, llim=0, ulim=100000000, **kwargs):
coast_sdef, points_sdef, 10000000, neighbours=1)
# get rid of infs
mask = np.where((distance_array > llim) & (distance_array < ulim))[0]
#new.dist_to_coast = distance_array[mask]
# new.dist_to_coast = distance_array[mask]
# impose on dataset
ds = new.vars.isel(time=mask)
# add to dataset
Expand All @@ -119,6 +119,7 @@ def filter_distance_to_coast(self, llim=0, ulim=100000000, **kwargs):
return new

def filter_blockMean(self, **kwargs):
print('Apply blockMean')
return self

def filter_lanczos(self, **kwargs):
Expand Down Expand Up @@ -161,6 +162,43 @@ def filter_lanczos(self, **kwargs):
new.vars[new.varalias].values = flatten(ts_lst)
return new

def filter_runmean(self, **kwargs):
print('Apply running mean filter')
from wavy.utils import runmean
new = deepcopy(self)

# apply slider if needed
win = kwargs.get('slider', len(new.vars.time))
ol = kwargs.get('overlap', 0)
indices = new.slider_chunks(slider=win, overlap=ol)

ts_lst = []
tgc_idx_lst = []
for i, j in indices:
tmp_idx = range(i, j)
# create tmp dataset reduced to i:j
tmp_ds = new.vars.isel(time=tmp_idx)
# apply gap chunks if needed
pdtimes = tmp_ds.time.to_pandas()
tgc_indices = new.time_gap_chunks(pdtimes, **kwargs)
for k, l in tgc_indices:
tmp_tgc_idx = range(k, l+1)
# apply min chunk size
if len(tmp_tgc_idx) > kwargs.get("chunk_min", 5):
y = tmp_ds[new.varalias].values[tmp_tgc_idx]
window = kwargs.get('window')
ts, _ = runmean(y, window,
mode='centered')
ts_lst.append(ts)
tgc_idx_lst.append(np.array(tmp_idx)[tmp_tgc_idx])
else:
print("Chunk size to small -> not filtered and rejected")
pass

new.vars = new.vars.isel(time=flatten(tgc_idx_lst))
new.vars[new.varalias].values = flatten(ts_lst)
return new

def filter_GP(self, **kwargs):
print('Apply GPR filter')
new = deepcopy(self)
Expand Down Expand Up @@ -210,7 +248,7 @@ def filter_linearGAM(self, **kwargs):
ol = kwargs.get('overlap', 0)
indices = new.slider_chunks(slider=win, overlap=ol)

ts_lst = []
ts_lst = []
tgc_idx_lst = []
for i, j in indices:
tmp_idx = range(i, j+1)
Expand Down Expand Up @@ -263,7 +301,7 @@ def despike_blockStd(self, **kwargs):

tgc_idx_lst = []
for i, j in indices:
tmp_idx = range(i, j+1)
tmp_idx = range(i, j)
print('tmp_idx', tmp_idx)
# create tmp dataset reduced to i:j
tmp_ds = new.vars.isel(time=tmp_idx)
Expand Down

0 comments on commit d247d73

Please sign in to comment.