Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug for run affable-shark model #368

Merged
merged 2 commits into from
Dec 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions src/components/ResourceItemInfo.vue
Original file line number Diff line number Diff line change
Expand Up @@ -104,11 +104,14 @@

<br />
<test-run-form
v-if="resourceItem.type == 'model' && modelAvailable"
v-if="resourceItem.type === 'model' && modelAvailable"
:resourceItem="resourceItem"
>
</test-run-form>
<div class="not-available" v-if="!modelAvailable">
<div
class="not-available"
v-if="resourceItem.type === 'model' && !modelAvailable"
>
This model is not available for testing.
</div>

Expand Down
114 changes: 84 additions & 30 deletions src/components/TestRun.vue
Original file line number Diff line number Diff line change
Expand Up @@ -37,20 +37,16 @@
<h3>Settings for image tiling</h3>
<div style="display: flex; gap: 30px">
<div style="width: 30%">
<b-field v-if="'x' in inputMinShape" label="Tile size(X)">
<b-field
v-if="'x' in inputMinShape && 'y' in inputMinShape"
label="Tile size(XY)"
>
<b-numberinput
v-model="tileSizes.x"
:min="inputMinShape.x"
:max="inputMaxShape.x"
></b-numberinput>
</b-field>
<b-field v-if="'y' in inputMinShape" label="Tile size(Y)">
<b-numberinput
v-model="tileSizes.y"
:min="inputMinShape.y"
:max="inputMaxShape.y"
></b-numberinput>
</b-field>
<b-field v-if="'z' in inputMinShape" label="Tile size(Z)">
<b-numberinput
v-model="tileSizes.z"
Expand All @@ -60,20 +56,16 @@
</b-field>
</div>
<div style="width: 30%">
<b-field v-if="'x' in inputMinShape" label="Tile overlap(X)">
<b-field
v-if="'x' in inputMinShape && 'y' in inputMinShape"
label="Tile overlap(XY)"
>
<b-numberinput
v-model="tileOverlap.x"
:min="0"
:max="inputMaxShape.x"
></b-numberinput>
</b-field>
<b-field v-if="'y' in inputMinShape" label="Tile overlap(Y)">
<b-numberinput
v-model="tileOverlap.y"
:min="0"
:max="inputMaxShape.y"
></b-numberinput>
</b-field>
<b-field v-if="'z' in inputMinShape" label="Tile overlap(Z)">
<b-numberinput
v-model="tileOverlap.z"
Expand Down Expand Up @@ -233,7 +225,16 @@ export default {
},
fixedTileSize() {
if (this.rdf) {
return this.rdf.inputs[0].shape instanceof Array;
const inputSpec = this.rdf.inputs[0];
const dims = this.tritonConfig.input[0]["dims"];
if (dims !== undefined && !dims.includes(-1)) {
return dims;
}
if (inputSpec.shape instanceof Array) {
return inputSpec.shape;
} else {
return false;
}
} else {
return false;
}
Expand All @@ -242,11 +243,10 @@ export default {
if (this.rdf) {
const axes = this.rdf.inputs[0].axes; // something like "zyx"
let minShape; // something like [16, 64, 64]
const shape = this.rdf.inputs[0].shape;
if (shape instanceof Array) {
minShape = shape;
if (this.fixedTileSize === false) {
minShape = this.rdf.inputs[0].shape.min;
} else {
minShape = shape.min;
minShape = this.fixedTileSize;
}
// return something like {x: 64, y: 64, z: 16}
const res = axes.split("").reduce((acc, cur, i) => {
Expand All @@ -262,12 +262,11 @@ export default {
if (this.rdf) {
const axes = this.rdf.inputs[0].axes; // something like "zyx"
let maxShape; // something like [16, 64, 64]
const shape = this.rdf.inputs[0].shape;
if (shape instanceof Array) {
maxShape = shape;
if (this.fixedTileSize !== false) {
maxShape = this.fixedTileSize;
} else {
// array of undefined
maxShape = shape.min.map(() => undefined);
maxShape = this.rdf.inputs[0].shape.min.map(() => undefined);
}
return axes.split("").reduce((acc, cur, i) => {
acc[cur] = maxShape[i];
Expand All @@ -278,13 +277,35 @@ export default {
}
}
},
watch: {
tileSizes: {
handler(oldObj, newObj) {
if (newObj.y !== newObj.x) {
this.tileSizes.y = newObj.x; // keep x and y the same
}
console.log(oldObj, newObj);
},
deep: true
},

tileOverlap: {
handler(oldObj, newObj) {
if (newObj.y !== newObj.x) {
this.tileOverlap.y = newObj.x; // keep x and y the same
}
console.log(oldObj, newObj);
},
deep: true
}
},
methods: {
async turnOn() {
this.switch = true;
this.setInfoPanel("Initializing...", true);
await this.loadImJoy();
await this.loadTritonClient();
await this.loadRdf();
await this.loadTritonConfig();
this.setDefaultTileSize();
this.setDefaultOverlap();
await this.detectInputEndianness();
Expand All @@ -308,10 +329,15 @@ export default {

setDefaultTileSize() {
const tileSizes = Object.assign({}, this.inputMinShape);
if (!this.fixedTileSize) {
const axes = this.rdf.inputs[0].axes;
if (this.fixedTileSize === false) {
const xyFactor = 4;
tileSizes.x = xyFactor * this.inputMinShape.x;
tileSizes.y = xyFactor * this.inputMinShape.y;
} else {
axes.split("").map((a, i) => {
tileSizes[a] = this.fixedTileSize[i];
});
}
this.tileSizes = tileSizes;
},
Expand All @@ -321,7 +347,7 @@ export default {
const outputSpec = this.rdf.outputs[0];
const axes = inputSpec.axes;
let overlap = {};
if (outputSpec.halo) {
if (outputSpec.halo && this.fixedTileSize === false) {
axes.split("").map((a, i) => {
if (outputSpec.axes.includes(a) && a !== "z") {
overlap[a] = 2 * outputSpec.halo[i];
Expand Down Expand Up @@ -386,12 +412,29 @@ export default {
let outImg = await this.submitTensor(paddedTensor);
await this.api.log("Output tile shape: " + outImg._rshape);
const outTensor = ImjoyToTfJs(outImg);
const cropedTensor = padder.crop(outTensor, padArr);
return cropedTensor;
const isImg2Img =
this.rdf.outputs[0].axes.includes("x") &&
this.rdf.outputs[0].axes.includes("y");
let result = outTensor;
if (isImg2Img) {
const cropedTensor = padder.crop(outTensor, padArr);
result = cropedTensor;
}
return result;
},

async runTiles(tensor, inputSpec, outputSpec) {
const padder = new ImgPadder(inputSpec, outputSpec, 0);
let padder;
if (this.fixedTileSize === false) {
padder = new ImgPadder(
undefined,
inputSpec.shape.min,
inputSpec.shape.step,
0
);
} else {
padder = new ImgPadder(this.fixedTileSize, undefined, undefined, 0);
}
const tileSize = inputSpec.axes.split("").map(a => this.tileSizes[a]);
const overlap = inputSpec.axes.split("").map(a => this.tileOverlap[a]);
console.log("tile size:", tileSize, "overlap:", overlap);
Expand All @@ -402,6 +445,10 @@ export default {
await this.api.log("Number of tiles: " + inTiles.length);
const outTiles = [];
for (let i = 0; i < inTiles.length; i++) {
this.setInfoPanel(
`Running the model... (${i + 1}/${inTiles.length})`,
true
);
const tile = inTiles[i];
console.log(tile);
tile.slice(tensor);
Expand Down Expand Up @@ -514,6 +561,13 @@ export default {
this.triton = await server.get_service("triton-client");
},

async loadTritonConfig() {
const nickname = this.resourceItem.nickname;
const url = `https://ai.imjoy.io/triton/v2/models/${nickname}/config`;
const config = await fetch(url).then(res => res.json());
this.tritonConfig = config;
},

async loadImJoy() {
function waitForImjoy(timeout = 10000) {
return new Promise((resolve, reject) => {
Expand Down
47 changes: 19 additions & 28 deletions src/imgProcess.js
Original file line number Diff line number Diff line change
Expand Up @@ -368,23 +368,23 @@ export async function getNpyEndianness(url) {
}

export class ImgPadder {
constructor(inputSpec, outputSpec, padValue = 0) {
this.inputSpec = inputSpec;
this.outputSpec = outputSpec;
constructor(fixedPaddedShape, padMin, padStep, padValue = 0) {
this.fixedPaddedShape = fixedPaddedShape;
this.padMin = padMin;
this.padStep = padStep;
this.padValue = padValue;
}

getPaddedShape(shape) {
const specShape = this.inputSpec.shape;
let paddedShape = [];
if (specShape instanceof Array) {
if (this.fixedPaddedShape) {
// Explicit shape
paddedShape = specShape;
paddedShape = this.fixedPaddedShape;
} else {
// Implicit shape
// infer from the min and step
const min = specShape.min;
const step = specShape.step;
const min = this.padMin;
const step = this.padStep;
for (let d = 0; d < shape.length; d++) {
if (step[d] === 0) {
paddedShape.push(shape[d]);
Expand Down Expand Up @@ -427,27 +427,18 @@ export class ImgPadder {

crop(tensor, pad, halo = undefined) {
let res;
const isImg2Img =
this.outputSpec.axes.includes("x") && this.outputSpec.axes.includes("y");
if (isImg2Img) {
// img-to-img model
if (halo) {
res = tf.slice(
tensor,
pad.map((p, i) => p[0] + halo[i]),
tensor.shape.map((s, i) => s - pad[i][0] - pad[i][1] - halo[i] * 2)
);
} else {
res = tf.slice(
tensor,
pad.map(p => p[0]),
tensor.shape.map((s, i) => s - pad[i][0] - pad[i][1])
);
}
if (halo) {
res = tf.slice(
tensor,
pad.map((p, i) => p[0] + halo[i]),
tensor.shape.map((s, i) => s - pad[i][0] - pad[i][1] - halo[i] * 2)
);
} else {
// other model, e.g. classification
// no crop
res = tensor;
res = tf.slice(
tensor,
pad.map(p => p[0]),
tensor.shape.map((s, i) => s - pad[i][0] - pad[i][1])
);
}
res._rdtype = tensor._rdtype;
return res;
Expand Down
Loading