This repository is the implementation of 'Weakly Supervised Visual Saliency Prediction (TIP2022)'.
Qiuxia Lai, Tianfei Zhou, Salman Khan, Hanqiu Sun, Jianbing Shen, Ling Shao.
Create an anaconda environment:
$ conda env create -f environment.yml
Activate the environment:
$ source activate torch36
$ <run_python_command> # see the examples below
Prediction results on MIT300, MIT1003, PASCAL-S, SALITON-Test, TORONTO, and DUT-OMRON can be downloaded from:
Google Drive: https://drive.google.com/file/d/1CWWv79RYwh1tRY82VtsjZ1N4KxyccTa_/view?usp=sharing
Baidu Disk: https://pan.baidu.com/s/1HfZNfNAsKqzJRAbX4WU7eA (password:s216
)
Our evaluation code is adapted from this matlab tool.
We use MS-COCO 2014 - train
for training, and a subset of MS-COCO - val
(i.e., the val
of SALICON
) for evaluation.
Images available at the official website.
Bounding boxes: Baidu Disk Link (train) (password:5ecm
) and Baidu Disk Link (eval) (password:qdrg
).
OR generated using EdgeBox.
Saliency prior maps: Baidu Disk Link (train) (password:u8h2
) and Baidu Disk Link (val) (password:qxxe
).
OR generated using the official matlab code of Dynamic visual attention: Searching for coding length increments, NeurIPS 2008.
Taking MIT1003
as an example.
You may download the dataset along with the bounding boxes from this Baidu Disk Link (password:ten8
) OR Google Drive for a fast try.
The datasets are arranged as:
DataSets
|----MS_COCO
|---train2014
|---val2014
|---train2014_eb500
|---val2014_eb500
|---train2014_nips08
|---val2014_nips08
|----SALICON
|---images
|---train
|---val
|---test
|---fixations
|---train
|---val
|---test
|---maps
|---train
|---val
|---eb500
|---train
|---val
|----MIT1003
|---ALLSTIMULI
|--xxx.jpeg
|--xxx.jpeg
|--...
|---ALLFIXATIONMAPS
|--...
|---ALLFIXATIONS
|--...
|---eb500
|--xxx.mat
|--...
Google Drive: https://drive.google.com/file/d/1KxyXNWo_mxPkRo1sf2jHFMB_Jxzc6msY/view?usp=sharing
Baidu Disk: https://pan.baidu.com/s/1Mn7U3UTKOVUW7w6WC5w65w password:bgft
- Set the
base_path
inconfig.py
be the parent folder ofDataSets
. - Put the downloaded
model_best.pt
in<code_path>/WF/Models/best/
.
Run
python main.py --phase test --model_name best --bestname model_best.pt --batch-size 2
The saliency prediction results will be saved in <code_path>/WF/Preds/MIT1003/<model_name>_multiscale/
.
Please evaluate the prediction results using the above mentioned matlab tool.
Coming soon.
If you find this repository useful, please consider citing the following reference.
@ARTICLE{lai2022weakly,
title={Weakly supervised visual saliency prediction},
author={Qiuxia Lai and Tianfei Zhou and Salman Khan and Hanqiu Sun and Jianbing Shen and Ling Shao},
journal={IEEE Trans. on Image Processing},
year={2022}
}
Qiuxia Lai: ashleylqxat
gmail.com | qxlaiat
cuc.edu.cn