Skip to content

Commit

Permalink
Add liekf example for se2_localization
Browse files Browse the repository at this point in the history
  • Loading branch information
Chris7462 committed Sep 1, 2024
1 parent de52f8b commit 2ab7960
Show file tree
Hide file tree
Showing 2 changed files with 286 additions and 0 deletions.
2 changes: 2 additions & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ add_executable(se2_average se2_average.cpp)
add_executable(se2_interpolation se2_interpolation.cpp)
add_executable(se2_decasteljau se2_DeCasteljau.cpp)
add_executable(se2_localization se2_localization.cpp)
add_executable(se2_localization_liekf se2_localization_liekf.cpp)
add_executable(se2_localization_ukfm se2_localization_ukfm.cpp)
add_executable(se2_sam se2_sam.cpp)

Expand All @@ -23,6 +24,7 @@ set(CXX_11_EXAMPLE_TARGETS
se2_decasteljau
se2_average
se2_localization
se2_localization_liekf
se2_sam

se2_localization_ukfm
Expand Down
284 changes: 284 additions & 0 deletions examples/se2_localization_liekf.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,284 @@
/**
* \file se2_localization_liekf.cpp
*
* Created on: Jan 20, 2021
* \author: artivis
*
* Modified on: Aug 30, 2024
* \author: chris
*
* ---------------------------------------------------------
* This file is:
* (c) 2021 artivis
*
* This file is part of `manif`, a C++ template-only library
* for Lie theory targeted at estimation for robotics.
* Manif is:
* (c) 2021 artivis
* ---------------------------------------------------------
*
* ---------------------------------------------------------
* Demonstration example:
*
* 2D Robot localization based on position measurements (GPS-like)
* using the (Left) Invariant Extended Kalman Filter method.
*
* See se2_localization.cpp for the right invariant equivalent
* ---------------------------------------------------------
*
* This demo corresponds to the application in chapter 4.3 (left invariant)
* in the thesis
* 'Non-linear state error based extended Kalman filters with applications to navigation' A. Barrau.
*
* It is adapted after the sample problem presented in chapter 4.1 (left invariant)
* in the thesis
* 'Practical Considerations and Extensions of the Invariant Extended Kalman Filtering Framework' J. Arsenault
*
* Finally, it is ported from an example (a matlab code plus a problem
* formulation/explanation document) by Faraaz Ahmed and James Richard
* Forbes, McGill University.
*
* The following is an abstract of the content of the paper.
* Please consult the paper for better reference.
*
*
* We consider a robot in the plane.
* The robot receives control actions in the form of axial
* and angular velocities, and is able to measure its position
* using a GPS for instance.
*
* The robot pose X is in SE(2) and the beacon positions b_k in R^2,
*
* | cos th -sin th x |
* X = | sin th cos th y | // position and orientation
* | 0 0 1 |
*
* The control signal u is a twist in se(2) comprising longitudinal
* velocity v and angular velocity w, with no lateral velocity
* component, integrated over the sampling time dt.
*
* u = (v*dt, 0, w*dt)
*
* The control is corrupted by additive Gaussian noise u_noise,
* with covariance
*
* Q = diagonal(sigma_v^2, sigma_s^2, sigma_w^2).
*
* This noise accounts for possible lateral slippage u_s
* through a non-zero value of sigma_s,
*
* At the arrival of a control u, the robot pose is updated
* with X <-- X * Exp(u) = X + u.
*
* GPS measurements are put in Cartesian form for simplicity.
* Their noise n is zero mean Gaussian, and is specified
* with a covariances matrix R.
* We notice the rigid motion action y = h(X) = X * [0 0 1]^T + v
*
* y_k = (x, y) // robot coordinates
*
* We define the pose to estimate as X in SE(2).
* The estimation error dx and its covariance P are expressed
* in the global space at epsilon.
*
* All these variables are summarized again as follows
*
* X : robot pose, SE(2)
* u : robot control, (v*dt ; 0 ; w*dt) in se(2)
* Q : control perturbation covariance
* y : robot position measurement in global frame, R^2
* R : covariance of the measurement noise
*
* The motion and measurement models are
*
* X_(t+1) = f(X_t, u) = X_t * Exp ( w ) // motion equation
* y_k = h(X, b_k) = X * [0 0 1]^T // measurement equation
*
* The algorithm below comprises first a simulator to
* produce measurements, then uses these measurements
* to estimate the state, using a Lie-based
* Left Invariant Kalman filter.
*
* This file has plain code with only one main() function.
* There are no function calls other than those involving `manif`.
*
* Printing simulated state and estimated state together
* with an unfiltered state (i.e. without Kalman corrections)
* allows for evaluating the quality of the estimates.
*/

#include "manif/SE2.h"

#include <vector>

#include <iostream>
#include <iomanip>

using std::cout;
using std::endl;

using namespace Eigen;

typedef Array<double, 2, 1> Array2d;
typedef Array<double, 3, 1> Array3d;

int main()
{
std::srand((unsigned int) time(0));

// START CONFIGURATION
//
//
const Matrix3d I = Matrix3d::Identity();

// Define the robot pose element and its covariance
manif::SE2d X, X_simulation, X_unfiltered;
Matrix3d P, P_L;

X_simulation.setIdentity();
X.setIdentity();
X_unfiltered.setIdentity();
P.setZero();

// Define a control vector and its noise and covariance
manif::SE2Tangentd u_simu, u_est, u_unfilt;
Vector3d u_nom, u_noisy, u_noise;
Array3d u_sigmas;
Matrix3d U;

u_nom << 0.1, 0.0, 0.05;
u_sigmas << 0.1, 0.1, 0.1;
U = (u_sigmas * u_sigmas).matrix().asDiagonal();

// Declare the Jacobians of the motion wrt robot and control
manif::SE2d::Jacobian J_x, J_u, AdX, AdXinv;

// Define the gps measurements in R^2
Vector2d y, y_noise;
Array2d y_sigmas;
Matrix2d R;

y_sigmas << 0.1, 0.1;
R = (y_sigmas * y_sigmas).matrix().asDiagonal();

// Declare the Jacobian of the measurements wrt the robot pose
Matrix<double, 2, 3> H; // H = J_e_x

// Declare some temporaries
Vector2d e, z; // expectation, innovation
Matrix2d E, Z; // covariances of the above
Matrix<double, 3, 2> K; // Kalman gain
manif::SE2Tangentd dx; // optimal update step, or error-state
manif::SE2d::Jacobian J_xi_x; // Jacobian is typedef Matrix
Matrix<double, 2, 3> J_e_xi; // Jacobian

//
//
// CONFIGURATION DONE



// DEBUG
cout << std::fixed << std::setprecision(3) << std::showpos << endl;
cout << "X STATE : X Y THETA" << endl;
cout << "----------------------------------" << endl;
cout << "X initial : " << X_simulation.log().coeffs().transpose() << endl;
cout << "----------------------------------" << endl;
// END DEBUG




// START TEMPORAL LOOP
//
//

// Make 10 steps. Measure up to three landmarks each time.
for (int t = 0; t < 10; t++)
{
//// I. Simulation ###############################################################################

/// simulate noise
u_noise = u_sigmas * Array3d::Random(); // control noise
u_noisy = u_nom + u_noise; // noisy control

u_simu = u_nom;
u_est = u_noisy;
u_unfilt = u_noisy;

/// first we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_simulation = X_simulation + u_simu; // overloaded X.rplus(u) = X * exp(u)

/// then we receive noisy gps measurement - - - - - - - - - - - - - - - -
y_noise = y_sigmas * Array2d::Random(); // simulate measurement noise

y = X_simulation.translation(); // position measurement, before adding noise
y = y + y_noise; // position measurement, noisy




//// II. Estimation ###############################################################################

/// First we move - - - - - - - - - - - - - - - - - - - - - - - - - - - -

X = X.plus(u_est, J_x, J_u); // X * exp(u), with Jacobians

P = J_x * P * J_x.transpose() + J_u * U * J_u.transpose();


/// Then we correct using the gps position - - - - - - - - - - - - - - -

// transform covariance from right to left invariant
AdX = X.adj();
AdXinv = X.inverse().adj();
P_L = AdX * P * AdX.transpose(); // from eq. (54) in the paper

// expectation
e = X.translation(); // e = t, for X = (R,t).
H.topLeftCorner<2, 2>() = Matrix2d::Identity();
H.topRightCorner<2, 1>() = manif::skew(1.0) * X.translation();
E = H * P_L * H.transpose();

// innovation
z = y - e;
Z = E + R;

// Kalman gain
K = P_L * H.transpose() * Z.inverse();

// Correction step
dx = K * z;

// Update
X = X.lplus(dx);
P = AdXinv * ((I - K * H) * P_L) * AdXinv.transpose();




//// III. Unfiltered ##############################################################################

// move also an unfiltered version for comparison purposes
X_unfiltered = X_unfiltered + u_unfilt;




//// IV. Results ##############################################################################

// DEBUG
cout << "X simulated : " << X_simulation.log().coeffs().transpose() << endl;
cout << "X estimated : " << X.log().coeffs().transpose() << endl;
cout << "X unfilterd : " << X_unfiltered.log().coeffs().transpose() << endl;
cout << "----------------------------------" << endl;
// END DEBUG

}

//
//
// END OF TEMPORAL LOOP. DONE.

return 0;
}

0 comments on commit 2ab7960

Please sign in to comment.