Skip to content
forked from t-sakai-kure/pywsl

Python codes for weakly-supervised learning

License

Notifications You must be signed in to change notification settings

aoikaneko/pywsl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pywsl: python codes for weakly-supervised learning

License: MIT Build Status PyPI version

This package contains the following implementation:

  • Unbiased PU learning
        in "Convex formulation for learning from positive and unlabeled data", ICML, 2015 [uPU]
  • Non-negative PU Learning
        in "Positive-unlabeled learning with non-negative risk estimator", NIPS, 2017 [nnPU]
  • PU Set Kernel Classifier
        in "Convex formulation of multiple instance learning from positive and unlabeled bags", Neural Networks, 2018 [PU-SKC]
  • Class-prior estimation based on energy distance
        in "Computationally efficient class-prior estimation under class balance change using energy distance", IEICE-ED, 2016 [CPE-ENE].
  • PNU classification
        in "Semi-supervised classification based on classification from positive and unlabeled data", ICML 2017 [PNU].
  • PNU-AUC optimization
        in "Semi-supervised AUC optimization based on positive-unlabeled learning", MLJ 2018 [PNU-AUC].

Installation

$ pip install pywsl

Main contributors

References

  1. du Plessis, M. C., Niu, G., and Sugiyama, M.   Convex formulation for learning from positive and unlabeled data.
    In Bach, F. and Blei, D. (Eds.), Proceedings of 32nd International Conference on Machine Learning, JMLR Workshop and Conference Proceedings, vol.37, pp.1386-1394, Lille, France, Jul. 6-11, 2015.
  2. Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.
    Positive-unlabeled learning with non-negative risk estimator.
    In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30, pp.1674-1684, 2017.
  3. Bao, H., Sakai, T., Sato, I., and Sugiyama, M.
    Convex formulation of multiple instance learning from positive and unlabeled bags.
    Neural Networks, vol.105, pp.132-141, 2018.
  4. Kawakubo, H., du Plessis, M. C., and Sugiyama, M.
    Computationally efficient class-prior estimation under class balance change using energy distance.
    IEICE Transactions on Information and Systems, vol.E99-D, no.1, pp.176-186, 2016.
  5. Sakai, T., du Plessis, M. C., Niu, G., and Sugiyama, M.
    Semi-supervised classification based on classification from positive and unlabeled data.
    In Precup, D. and Teh, Y. W. (Eds.), Proceedings of 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol.70, pp.2998-3006, Sydney, Australia, Aug. 6-12, 2017.
  6. Sakai, T., Niu, G., and Sugiyama, M.
    Semi-supervised AUC optimization based on positive-unlabeled learning.
    Machine Learning, vol.107, no.4, pp.767-794, 2018.

About

Python codes for weakly-supervised learning

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%