Skip to content

Commit

Permalink
Pluggable Model Integration Interface (#738)
Browse files Browse the repository at this point in the history
This PR drafts a new model integration interface which makes it easier
to support new and custom model architectures for selected adapter
methods without full model implementation.

This is done with the new `AdapterModelInterface` class that translates
from generic model access points to model-specific attribute names.

### Example usage:

Basic interface for Qwen model:
```python
model_interface = AdapterModelInterface(
    adapter_types=["lora", "reft"],
    model_embeddings="embed_tokens",
    model_layers="layers",
    layer_self_attn="self_attn",
    layer_cross_attn=None,
    attn_k_proj="k_proj",
    attn_q_proj="q_proj",
    attn_v_proj="v_proj",
    attn_o_proj="o_proj",
    layer_intermediate_proj="mlp.up_proj",
    layer_output_proj="mlp.down_proj",
)

model_name = "Qwen/Qwen2-0.5B"

model = AutoModelForCausalLM.from_pretrained(model_name)
adapters.init(model, interface=model_interface)

config = LoRAConfig()
# config = LoReftConfig()
model.add_adapter("my_adapter", config=config)

print(model.adapter_summary())
```

#### Extended interface

Additionally, the interface provides optional attributes that enable
(almost) full bottleneck adapter support. Without the extended
interface, bottleneck adapter support is very limited.

Example for Gemma2:

```python
adapter_interface = AdapterModelInterface(
    adapter_types=["bottleneck", "lora", "reft"],
    model_embeddings="embed_tokens",
    model_layers="layers",
    layer_self_attn="self_attn",
    layer_cross_attn=None,
    attn_k_proj="k_proj",
    attn_q_proj="q_proj",
    attn_v_proj="v_proj",
    attn_o_proj="o_proj",
    layer_intermediate_proj="mlp.up_proj",
    layer_output_proj="mlp.down_proj",
    layer_pre_self_attn="input_layernorm",
    layer_pre_cross_attn=None,
    layer_pre_ffn="pre_feedforward_layernorm",
    layer_ln_1="post_attention_layernorm",
    layer_ln_2="post_feedforward_layernorm",
)
```

### Additional novelties

- Adds `AdapterMethod` as an enum of all supported adapter method types
(e.g. `AdapterMethod.bottleneck`, `AdapterMethod.lora`, ...)
- Adds a `supports_adapter()` method for easy checking whether a model
instance supports a certain adapter method. This method can receive an
`AdapterMethod` string or a config object:
    ```python
    model.supports_adapter(AdapterMethod.prompt_tuning)
    # or
    model.supports_adapter(PromptTuningConfig())
    ```
(This method is supported by both models implemented via "classic"
mixins and via pluggable interface.)

### State of implementation

Supported adapter types:
- [x] LoRA
- [x] ReFT
- [x] Bottleneck/ Compacter: **partial**, currently does **not**
support:
    - [x] `is_parallel`, via extended interface
    - [x] `original_ln_before=True`, via extended interface
    - [ ] `original_ln_after=False` (e.g. used for `AdapterPlusConfig`)
- [x] Invertible adapters
- [ ] Prefix Tuning
- [x] Prompt Tuning: **partial**: attention mask modification only
supports very specific model implementations

Supported features:
- [x] Embedding training
- [x] Fusion composition

**Not** to be supported:
- Parallel composition
- AdapterModel classes
  • Loading branch information
calpt authored Mar 2, 2025
1 parent ba2b3ba commit 2884024
Show file tree
Hide file tree
Showing 28 changed files with 1,109 additions and 103 deletions.
8 changes: 8 additions & 0 deletions docs/classes/adapter_model_interface.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
Adapter Model Interface
=======================

.. autoclass:: adapters.AdapterModelInterface
:members:

.. autoclass:: adapters.AdapterMethod
:members:
7 changes: 7 additions & 0 deletions docs/contributing/adding_adapters_to_a_model.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,11 @@
# Adding Adapters to a Model

```{eval-rst}
.. important::
For most use cases, it can be much easier support a new model architecture via the new adapter plugin interface.
Check out `Custom Models <../plugin_interface.html>`_ for more.
```

This document gives an overview of how new model architectures of Hugging Face Transformers can be supported by `adapters`.
Before delving into implementation details, you should familiarize yourself with the main design philosophies of `adapters`:

Expand Down
4 changes: 3 additions & 1 deletion docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,6 @@ Currently, we support the PyTorch versions of all models as listed on the `Model
merging_adapters
prediction_heads
embeddings
extending

.. toctree::
:maxdepth: 2
Expand All @@ -66,6 +65,7 @@ Currently, we support the PyTorch versions of all models as listed on the `Model
:caption: Supported Models

model_overview
plugin_interface
classes/models/albert
classes/models/auto
classes/models/bart
Expand Down Expand Up @@ -99,6 +99,7 @@ Currently, we support the PyTorch versions of all models as listed on the `Model
classes/adapter_config
classes/model_adapters_config
classes/adapter_layer
classes/adapter_model_interface
classes/model_mixins
classes/adapter_training
classes/adapter_utils
Expand All @@ -110,6 +111,7 @@ Currently, we support the PyTorch versions of all models as listed on the `Model
contributing
contributing/adding_adapter_methods
contributing/adding_adapters_to_a_model
extending

Citation
========
Expand Down
7 changes: 5 additions & 2 deletions docs/model_overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ The table below further shows which model architectures support which adaptation

| Model | (Bottleneck)<br> Adapters | Prefix<br> Tuning | LoRA | Compacter | Adapter<br> Fusion | Invertible<br> Adapters | Parallel<br> block | Prompt<br> Tuning | ReFT |
| --------------------------------------- | -| - | - | - | - | - | - |- | - |
| [Custom models](plugin_interface.html) | ✅(°) | ||||| |||
| [ALBERT](classes/models/albert.html) ||||||||||
| [BART](classes/models/bart.html) |||||||| ||
| [BEIT](classes/models/beit.html) |||||| | |||
Expand All @@ -38,9 +39,11 @@ The table below further shows which model architectures support which adaptation
| [XLM-RoBERTa](classes/models/xlmroberta.html) ||||||||||
| [X-MOD](classes/models/xmod.html) ||||||||||

(°) `original_ln_after=False` is unsupported for bottleneck configs.
(*) If the used encoder and decoder model class are supported.

**Missing a model architecture you'd like to use?**
adapters can be easily extended to new model architectures as described in [Adding Adapters to a Model](https://docs.adapterhub.ml/contributing/adding_adapters_to_a_model.html).
**Missing a model architecture you'd like to use?**
The new model plugin interface makes it easy to support new transformer models with just a few lines of code [Learn more](plugin_interface.md).
Also, _Adapters_ can be extended to new model architectures as described in [Adding Adapters to a Model](https://docs.adapterhub.ml/contributing/adding_adapters_to_a_model.html).
Feel free to [open an issue](https://github.com/Adapter-Hub/adapters/issues) requesting support for a new architecture.
_We very much welcome pull requests adding new model implementations!_
94 changes: 94 additions & 0 deletions docs/plugin_interface.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Custom Models

The _Adapters_ library provides a simple mechanism for integrating adapter methods into any available _Transformers_ model - including custom architectures.
This can be accomplished by defining a plugin interface instance of [`AdapterModelInterface`](adapters.AdapterModelInterface).
The following example shows how this looks like for Gemma 2:

```python
import adapters
from adapters import AdapterModelInterface
from transformers import AutoModelForCausalLM

plugin_interface = AdapterModelInterface(
adapter_methods=["lora", "reft"],
model_embeddings="embed_tokens",
model_layers="layers",
layer_self_attn="self_attn",
layer_cross_attn=None,
attn_k_proj="k_proj",
attn_q_proj="q_proj",
attn_v_proj="v_proj",
attn_o_proj="o_proj",
layer_intermediate_proj="mlp.up_proj",
layer_output_proj="mlp.down_proj",
)

model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b-it", token="<YOUR_TOKEN>")
adapters.init(model, interface=plugin_interface)

model.add_adapter("my_adapter", config="lora")

print(model.adapter_summary())
```

## Walkthrough

Let's go through what happens in the example above step by step:

**1. Define adapter methods to plug into a model:**
The `adapter_methods` argument is the central parameter to configure which adapters will be supported in the model.
Here, we enable all LoRA and ReFT based adapters.
See [`AdapterMethod`](adapters.AdapterMethod) for valid options to specify here.
Check out [Adapter Methods](methods.md) for detailed explanation of the methods.

**2. Define layer and module names:**
While all Transformers layers share similar basic components, their implementation can differ in terms of subtleties such as module names.
Therefore, the [`AdapterModelInterface`](adapters.AdapterModelInterface) needs to translate the model-specific module structure into a common set of access points for adapter implementations to hook in.
The remaining attributes in the definition above serve this purpose.
Their attribute names follow a common syntax that specify their location and purpose:
- The initial part before the first "_" defines the base module relative to which the name should be specified.
- The remaining part after the first "_" defines the functional component.

E.g., `model_embeddings` identifies the embeddings layer (functional component) relative to the base model (location).
`layer_output_proj` identifies the FFN output projection relative to one Transformer layer.
Each attribute value may specify a direct submodule of the reference module (`"embed_token"`) or a multi-level path starting at the reference module (`"mlp.down_proj"`).

**3. (optional) Extended interface attributes:**
There are a couple of attributes in the [`AdapterModelInterface`](adapters.AdapterModelInterface) that are only required for some adapter methods.
We don't need those in the above example for LoRA and ReFT, but when supporting bottleneck adapters as well, the full interface would look as follows:
```python
adapter_interface = AdapterModelInterface(
adapter_types=["bottleneck", "lora", "reft"],
model_embeddings="embed_tokens",
model_layers="layers",
layer_self_attn="self_attn",
layer_cross_attn=None,
attn_k_proj="k_proj",
attn_q_proj="q_proj",
attn_v_proj="v_proj",
attn_o_proj="o_proj",
layer_intermediate_proj="mlp.up_proj",
layer_output_proj="mlp.down_proj",
layer_pre_self_attn="input_layernorm",
layer_pre_cross_attn=None,
layer_pre_ffn="pre_feedforward_layernorm",
layer_ln_1="post_attention_layernorm",
layer_ln_2="post_feedforward_layernorm",
)
```

**4. Initialize adapter methods in the model:**
Finally, we just need to apply the defined adapter integration in the target model.
This can be achieved using the usual `adapters.init()` method:
```python
adapters.init(model, interface=adapter_interface)
```
Now, you can use (almost) all functionality of the _Adapters_ library on the adapted model instance!

## Limitations

The following features of the _Adapters_ library are not supported via the plugin interface approach:
- Prefix Tuning adapters
- Parallel composition blocks
- XAdapterModel classes
- Setting `original_ln_after=False` in bottleneck adapter configurations (this affects `AdapterPlusConfig`)
2 changes: 2 additions & 0 deletions src/adapters/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@
"Seq2SeqLMHead",
"TaggingHead",
],
"interface": ["AdapterMethod", "AdapterModelInterface"],
"methods.adapter_layer_base": ["AdapterLayerBase", "ComposableAdapterLayerBase"],
"model_mixin": [
"EmbeddingAdaptersMixin",
Expand Down Expand Up @@ -198,6 +199,7 @@
Seq2SeqLMHead,
TaggingHead,
)
from .interface import AdapterMethod, AdapterModelInterface
from .methods.adapter_layer_base import AdapterLayerBase, ComposableAdapterLayerBase
from .model_mixin import (
EmbeddingAdaptersMixin,
Expand Down
121 changes: 121 additions & 0 deletions src/adapters/interface.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import json
import os
from dataclasses import asdict, dataclass
from typing import List, Optional

from transformers.utils import cached_file

from . import __version__
from .utils import INTERFACE_CONFIG_NAME


class AdapterMethod:
"""
Enum of all supported adapter method types.
Attributes:
bottleneck: Adapter methods using bottleneck layers.
prefix_tuning: Adapters methods based on Prefix Tuning. Note that this is currently unsupported via AdapterModelInterface.
lora: Adapter methods based on low-rank adaptation.
prompt_tuning: Adapter methods based on Prompt Tuning.
reft: Adapters methods based on Representation Fine-Tuning.
invertible: Adapter methods using invertible modules.
"""

bottleneck = "bottleneck"
prefix_tuning = "prefix_tuning"
lora = "lora"
prompt_tuning = "prompt_tuning"
reft = "reft"
invertible = "invertible"

@staticmethod
def get_from_config(config) -> List[str]:
"""
Get the adapter type from a given adapter config.
Args:
config: The adapter config.
Returns:
List[str]: The adapter type.
"""
methods = []
if getattr(config, "inv_adapter", False):
methods.append(AdapterMethod.invertible)
if config.architecture is None:
methods.append(AdapterMethod.bottleneck)
elif config.architecture == "union":
for sub_config in config.configs:
methods.extend(AdapterMethod.get_from_config(sub_config))
else:
methods.append(config.architecture)
return methods


@dataclass
class AdapterModelInterface:
"""
Defines the main interface for integrating adapter methods into a model class.
This interface translates generic accessor names to model-specific attribute names.
Args:
adapter_methods (List[str]): List of adapter types that are supported by the model.
model_embeddings (str): Name of the model's embedding layer.
model_layers (str): Name of the model's layer list.
layer_self_attn (str): Name of the self-attention layer in a transformer layer.
layer_cross_attn (str): Name of the cross-attention layer in a transformer layer.
attn_k_proj (str): Name of the key projection layer in an attention layer.
attn_q_proj (str): Name of the query projection layer in an attention layer.
attn_v_proj (str): Name of the value projection layer in an attention layer.
attn_o_proj (str): Name of the output projection layer in an attention layer.
layer_intermediate_proj (str): Name of the intermediate projection layer in a transformer layer.
layer_output_proj (str): Name of the output projection layer in a transformer layer.
layer_pre_self_attn (Optional[str]): Hook point directly before the self attention layer. Used for extended bottleneck adapter support.
layer_pre_cross_attn (Optional[str]): Hook point directly before the cross attention layer. Used for extended bottleneck adapter support.
layer_pre_ffn (Optional[str]): Hook point directly before the feed forward layer. Used for extended bottleneck adapter support.
layer_ln_1 (Optional[str]): Layer norm *after* the self-attention layer. Used for extended bottleneck adapter support.
layer_ln_2 (Optional[str]): Layer norm *after* the feed forward layer. Used for extended bottleneck adapter support.
"""

adapter_methods: List[str]

model_embeddings: str
model_layers: str

layer_self_attn: str
layer_cross_attn: str
attn_k_proj: str
attn_q_proj: str
attn_v_proj: str
attn_o_proj: str

layer_intermediate_proj: str
layer_output_proj: str

# Optional attributes for extended bottleneck adapter support
layer_pre_self_attn: Optional[str] = None
layer_pre_cross_attn: Optional[str] = None
layer_pre_ffn: Optional[str] = None
layer_ln_1: Optional[str] = None
layer_ln_2: Optional[str] = None

def to_dict(self):
return asdict(self)

def _save(self, save_directory, model_config):
config_dict = {
"model_type": model_config.model_type,
"interface": self.to_dict(),
"version": "adapters." + __version__,
}
save_path = os.path.join(save_directory, INTERFACE_CONFIG_NAME)
with open(save_path, "w") as f:
json.dump(config_dict, f, indent=2, sort_keys=True)

@classmethod
def _load(cls, path_or_repo_id: str, **kwargs):
resolved_file = cached_file(path_or_repo_id, INTERFACE_CONFIG_NAME, **kwargs)
with open(resolved_file, "r") as f:
config_dict = json.load(f)
return AdapterModelInterface(**config_dict["interface"])
14 changes: 14 additions & 0 deletions src/adapters/methods/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
from .bottleneck import init_bottleneck
from .invertible import init_invertible_adapters
from .lora import init_lora
from .prompt_tuning import init_prompt_tuning
from .reft import init_reft


METHOD_INIT_MAPPING = {
"bottleneck": init_bottleneck,
"lora": init_lora,
"prompt_tuning": init_prompt_tuning,
"reft": init_reft,
"invertible": init_invertible_adapters,
}
Loading

0 comments on commit 2884024

Please sign in to comment.