Skip to content

acmilannesta/MIMIC-III_Sepsis_Prediction

Repository files navigation

CSE-6250-Group-Project

Data

Run sql and python code in following orders to recreate the csv files used in modeling. Notice running the 48h series sql with control lab and vital will cost 1GB and 10GB usage of bigquery quota.

Cohort.sql
hourly_cohort.sql
match-control.py
static-query.sql
extract-48h-of-hourly-case-lab-series.sql
extract-48h-of-hourly-case-vital-series.sql
extract-48h-of-hourly-control-lab-series.sql
extract-48h-of-hourly-control-vital-series.sql
data_prep_step1.py

For all sql codes, change project and data names to your own location accordingly. The two python files can be run as follows assuming you are in the top level folder

python Python/match-control.py -c <bigquery credential json filename> -t <bigquery table reference>
python Python/data_prep_step1.py -c <bigquery credential json filename> -t <bigquery table reference> -w <prediction window hours(default is 3)>

and an example would be

python Python/match-control.py -c bdfh.json -t cdcproject.BDFH
python Python/data_prep_step1.py -c bdfh.json -t cdcproject.BDFH -w 3

The data will be saved in the Data folder.

Models

All models are in development. For the latest versions, check the individual branches if not found under the main branch:

Model performance

drawing drawing

Resource

About

Predict Sepsis Onset using MIMIC-III Clinical data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published