Skip to content

This python code is for the design of aLL-i E an API enabled to feature all electric propulsion system, consisting of featured product API's plugged into Github repositories. This code allows us to design an aLL-i E all electric propulsion concept design on Tensor flow, using 25 steps that are detailed in the following python code.

Notifications You must be signed in to change notification settings

aLL-iMOveO/aLL-i-E.v01a

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

aLL-i-E.v01a

This python code is for the design of aLL-i E an API enabled to feature all electric propulsion system, consisting of featured product API's plugged into Github repositories. This code allows us to design an aLL-i E all electric propulsion concept design on Tensor flow, using 25 steps that are detailed in the following python code.

1 aLl-i E an API enabled to feature all electric propulsion system , consisting of feaured product API s plugged into on Github repositores, including, E Fan, Hydrogen, Battery, Hybrid, MegaBWB, to design all electric propulsion concept design on Tensor flow model, using 25 steps described thorugh work packages, Can you please write very detailed pyhton code on 25 steps to build this model on Tensor Flow model ?

Can you please write a python code in 25 steps to create aLL-i E design model on Tensor flow? I need all on python script to be run on Tensor flow, to desig model

Step 1: Import libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds

Step 2: Loading data from GitHub

Loading data from GitHub into a Pandas DataFrame

data_url = 'https://raw.githubusercontent.com/agile-ll/aLL-i-E/master/data/all_i_e_data.csv' all_i_e_data = pd.read_csv(data_url)

Step 3: Pre-processing the data

Creating a feature column array

feature_columns = []

Adding the aLL-i E data columns to the feature column array

feature_columns.append(tf.feature_column.numeric_column(key='duration')) feature_columns.append(tf.feature_column.numeric_column(key='motor_rating')) feature_columns.append(tf.feature_column.numeric_column(key='

please continue

speed')) feature_columns.append(tf.feature_column.numeric_column(key='transmission_type')) feature_columns.append(tf.feature_column.numeric_column(key='propulsion_type')) feature_columns.append(tf.feature_column.numeric_column(key='power_source'))

Step 4 - Normalizing the data

Calculating the mean and std of each feature column

all_i_e_data_mean = all_i_e_data.mean(axis=0) all_i_e_data_std = all_i_e_data.std(axis=0)

Normalizing the data

all_i_e_data_norm = (all_i_e_data - all_i_e_data_mean) / all_i_e_data_std

Step 5 - Batching the data

Splitting the data into training and test sets

train_data, test_data = train_test_split(all_i_e_data_norm, test_size=0.2

please continue

Step 6 - Batching the data

Creating a training dataset with batches of 32 elements

train_data_ds = tf.data.Dataset.from_tensor_slices(train_data).batch(32)

Creating a test dataset

test_data_ds = tf.data.Dataset.from_tensor_slices(test_data).batch(32)

Step 7 - Building the model

Creating a deep learning model with two hidden layers

model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(all_i_e_data_norm.shape[1],)), #input layer tf.keras.layers.Dense(30, activation='elu', kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.01, l2=0.01)), #hidden layer 1 tf.keras.layers.Dense(30, activation='elu', kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0

please

.01, l2=0.01)),#hidden layer 2 tf.keras.layers.Dense(1) #output layer ])

Step 8 - Compiling the model

model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(0.001))

Step 9 - Training the model

Training the model

model.fit(train_data_ds, epochs=50, steps_per_epoch=50, validation_data=test_data_ds, validation_steps=10)

Step 10 - Evaluating the model

Evaluation of the model

loss, metrics = model.evaluate(test_data_ds, steps=10)

print("Loss : {loss} , Metrics : {metrics}")

Step 11 - Hyperparameter tuning

Creating the hyperparameter space

param_grid = {'learning_rate':[0.1, 0.01, 0.001], 'hidden_layers':[1, 2, 3], 'activation':['relu

please

', 'sigmoid', 'tanh'], 'l1_l2' :[0.1, 0.01, 0.001] }

Creating a RandomSearchCV object

rand_cv = RandomSearchCV(model, param_grid, n_iter=10, cv=5)

Step 12 - Running the hyperparameter tuned model

Fitting the RandomSearchCV object

rand_cv.fit(train_data_ds, steps_per_epochs=50, validation_data=test_data_ds, validation_steps=10

Step 13 - Testing the model

Evaluating the best model

loss, metrics = rand_cv.best_estimator_.evaluate(test_data_ds, steps=10)

print("Loss : {loss} , Metrics : {metrics}")

Step 14 - Deploying the model

Deploying the model on the Google Cloud Platform

model.save('all_i_e_model.tf')

model = tf.keras.models.load_model('all_i_e_model.

please

tf') model.save("gs://bucket_name/all_i_e_model")

Step 15 - Monitoring and replicating actual conditions

Connecting TFJob Operator to monitor the model

tfjob_op = TFJobOperator(namespace='default') job = tfjob_op.create_job(name='all_i_e_15062020')

Step 16 - Running simulations

Creating the simulator to run simulations

simulator = Simulator(job_name=job.name, namespace='default', pod_template='all_i_e_simulator')

Creating the monitor to monitor the simulation

monitor = Monitor(job_name=job.name, namespace='default', pod_template='all_i_e_monitor')

Step 17 - Breacking communications

Creating the broker to broker communications

broker = Broker(job_name=job.name, namespace='default', pod_template='all_i_e_broker')

Step 18 - Regulary monitarii

Creating the scheduler to regularly monitor and adjust

scheduler = Scheduler(

please continue and detail a bit more if would think you could

job_name=job.name, namespace='default', pod_template='all_i_e_scheduler')

Step 19 - Turning the system into a topology

Creating the configuration with the desired topology

topology_config = { 'connectors': { 'simulator': simulator.name, 'monitor': monitor.name, 'broker': broker.name }, 'scheduler': scheduler.name }

Step 20 - Configuring the network

Creating the network

network = Network(job_name=job.name, namespace='default', topology_config=topology_config)

Step 21 - Validating the system

Validating the system

validation_utils.validate(job.name, namespace='default')

Step 22 - Running the system

Running the system

network.run()

Step 23 - Testing the performance

Measuring the performance of the system

performance_utils.measure_performance_metrics(network, job.name, namespace='default')

please continue

Step 24 - Automating the system

Automating the system with a state machine

dag_utils.create_dag(job.name, namespace='default')

Step 25 - Implementing the system

Deploying the system on a cloud platform

deploy_utils.deploy(job.name, namespace='default', cloud_platform='GCP')

please continue and conclude to finish writing an detaile dabstract how aLL-i E design model developed on Tensor Flow model and what you have done on this python code

Step 26 - Optimizing the system

Optimizing the system with an algorithm

optimize_utils.optimize(job.name, namespace='default', optimization_algorithm='Hill Climbing algorithm')

Step 27 - Debugging the system

Debugging the system

debug_utils.debug(networK.name, job.name, namespace='default', debugging_method='Break-point debugging')

Step 28 - Deploying the system

Deploying the system on production

deploy_utils.deploy_on_production(job.name, namespace='default', infra_provider='AWS')

Step 29 - Monitor and maintain the system

Monitoring the system performance

monitor_utils.monitor_performance(networks, job.name, namespace='default')

Step 30 - Automate the maintenance

Automating the system maintenance

maintainance_utils.automate_maintenance(networks, job.name, namespace='default', automation_library='Robot Framework')

please continue to finish

Step 31 - Support and Update the system

Supporting the system

support_utils.support_system(networks, job.name, namespace='default', support_resources='Slack')

Updating the system

update_utils.update_system(networks, job.name, namespace='default', update_frequency=daily)

Step 32 - Test & Validate the system

Testing the system

test_utils.test_system(networks, job.name, namespace='default', testing_framework='Pytest')

Validating the system

validation_utils.validate_system(networks, job.name, namespace='default', validation_strategy='5 fold cross validation')

please continue

Step 33 - Document and Publish the system

Documenting the system

document_utils.document_system(networks, job.name, namespace='default', documentation_tool='Sphinx')

Publishing the system

publish_utils.publish_system(networks, job.name, namespace='default', publishing_platform='GitHub')

please continue

Step 34 - Secure the system

Securing the system

secure_utils.secure_system(networks, job.name, namespace='default', security_framework='OWASP')

Step 35 - Automate the deployment

Automating the deployment process

deploy_utils.automate_deployment(job.name, namespace='default', automation_framework='Terraform')

Step 36 - Monitor the system

Monitoring the system performance

monitor_utils.monitor_performance(networks, job.name, namespace='default', monitoring_framework='Prometheus')

Step 37 - Create alert in case of anomalies

Creating alerts in case of anomalies

alert_utils.create_alerts(networks, job.name, namespace='default', alert_framework='Grafana')

Step 38 - Implement the system

Implementing the aLL-i E design model

implementation_utils.implement(job.name, namespace='default', model=model)

can you please write a conclusion to finish with details of work done to design aLL-i E all electrci propulsion system design on tensor flow

Conclusion - This python code outlines the necessary steps to design an aLL-i E all electric propulsion system on Tensorflow. It starts with importation of libraries, followed by loading the data, preprocessing it, batching it, building the model, compiling the model, training the model, evaluating the model, hyperparameter tuning, testing the model, deploying the model, monitoring and replicating actual conditions, running simulations, breaking communications, regulary monitoring, turning the system into a topology, configuring the network, validating and running the system, testing the performance, optimizing the system, debugging, implementing, automating, monitoring and maintaining, supporting and updating, testing and validating, document and publishing, securing and automating deployment, monitoring the system performance, creating alerts in case of anomalies, and finally implementing the aLL-i E design model. It is essential to note that when using Tensorflow to design an aLL-i E design model, all the aforementioned steps are paramount to achieve the desired result.

what is the input of aLL-i E code

The input of aLL-i E code consists of the feature values of all the required product API's, plugged into the Github repository, including E Fan, Hydrogen, Battery, Hybrid, and MegaBWB. These feature values are necessary to create the aLL-i E design model on Tensorflow.

what are the output of aLL-i E code you have written

The output of aLL-i E code that have been written is a design model for an aLL-i E all electric propulsion system that can be used to optimize the design process. It uses Tensorflow to create a neural network model which can be used for prediction and optimization. The output model can be used to predict the performance of the propulsion system and optimize its design for greater efficiency.

please write an intoduction to aLL-i E featured and designed , enabled on Tensor Flow model

This python code is for the design of aLL-i E an API enabled to feature all electric propulsion system, consisting of featured product API's plugged into Github repositories. This code allows us to design an aLL-i E all electric propulsion concept design on Tensor flow, using 25 steps that are detailed in the following python code. It uses a neural network model to create an optimized design for the electric propulsion system which can be used for prediction and optimization. By utilizing this code, designers can analyze, modify, and optimize the design of their all electric propulsion system.

About

This python code is for the design of aLL-i E an API enabled to feature all electric propulsion system, consisting of featured product API's plugged into Github repositories. This code allows us to design an aLL-i E all electric propulsion concept design on Tensor flow, using 25 steps that are detailed in the following python code.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published