-
Notifications
You must be signed in to change notification settings - Fork 77
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: 添加数分Ⅱ历年卷解答与数分Ⅰ书评,修复普物 Ⅱ中格式错误 (#170)
- Loading branch information
1 parent
dd70443
commit e05a95f
Showing
5 changed files
with
257 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
246 changes: 246 additions & 0 deletions
246
docs/math_phys/math_analysis2/数学分析(甲)Ⅱ(H)2020春夏回忆卷解答 重制版.tex
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
\documentclass[UTF8,14pt,normal]{ctexart} | ||
\usepackage{amsmath} | ||
\usepackage{physics} | ||
\usepackage{mismath} % \ds | ||
\usepackage{amsfonts,amssymb} | ||
\usepackage{geometry} | ||
\usepackage{extarrows} | ||
|
||
\geometry{a4paper,scale=0.66,top=0.8in,bottom=1.2in,left=1in,right=1in} | ||
\title{数学分析(甲)II(H)2020春夏期末\quad 重制版答案} | ||
\author{V1CeVersa} | ||
\date{\today} | ||
|
||
\linespread{1.2} | ||
\addtolength{\parskip}{.8em} | ||
|
||
\begin{document} | ||
|
||
\maketitle | ||
|
||
\noindent{\heiti\textbf{一、}} 函数项级数、含参变量积分、广义积分 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
若\(\ds \sum_{n=1}^{\infty}u_n(x)\)一致收敛,其和函数为\(S(x)\),对任意的\(\varepsilon>0\),存在仅与\(\varepsilon\)相关的正整数\(N(\varepsilon)\in\mathbb{N}\),使得当\(n>N(\varepsilon)\)时,有\[\left|\sum_{k=1}^{n}u_k(x)-S(x)\right|<\varepsilon.\] | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
若\(\ds\int_{a}^{+\infty}f(x,y)\dd{y}\)在\(I\)上一致收敛,则对任意的\(\varepsilon>0\),存在仅与\(\varepsilon\)相关的正实数\(A_0(\varepsilon)\in\mathbb{R}_{+}\),使得当\(A>A_0(\varepsilon)\)时,有\[\left|\int_{A}^{+\infty}f(x,y)\right|<\varepsilon.\] | ||
|
||
\noindent{\heiti\textbf{二、}} 正项级数、方向导数 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
对\(x\geqslant0\),我们证明不等式\(\sin x\geqslant x-\dfrac{1}{6}x^3\). | ||
|
||
设\(f(x)=\sin x-x +\dfrac{1}{6}x^3,\enspace x\geqslant0\),\(f'(x) = \cos x -1 +\dfrac{1}{2}x^2\),\(f''(x) = -\sin x+x\geqslant0\). | ||
|
||
则\(f'(x)\geqslant f'(0) = 0\),\(f(x)\geqslant f(0)= 0\),不等式得证.所以 | ||
\[\sum_{n=1}^{\infty}\frac{1}{n^{2n\sin(1/n)}}\leqslant\sum_{n=1}^{\infty}n^{-2(\frac{1}{n}-\frac{1}{6n^3})} = \sum_{n=1}^{\infty}n^{-(2-\frac{1}{3n^2})}\leqslant\sum_{n=1}^{\infty}n^{-\frac{1}{n^{5/3}}}\] | ||
|
||
根据比较判别法,此正项级数收敛. | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
设\(r=\sqrt{x^2+y^2+z^2}\),则\(\ds \nabla u = \left(\pdv{u}{x},\pdv{u}{y},\pdv{u}{z}\right) = \left(\frac{x}{r},\frac{y}{r},\frac{z}{r}\right)\). | ||
|
||
曲线在\(P_0\)点的方向向量为\(\ds \vec{l} = \eval{\left(x'(t),y'(t),z'(t)\right)}_{(1,2,3)} = (1,4,12)\),其单位向量为\(\vec{l}_0 = \dfrac{\vec{l}}{\lvert\vec{l}\rvert} = \dfrac{(1,4,12)}{\sqrt{161}}\). | ||
那么\[\pdv{u}{\vec{l}} = \vec{l}_0\cdot\nabla u = \frac{45}{7\sqrt{46}}.\] | ||
|
||
\clearpage | ||
\noindent{\heiti\textbf{三、}} 重积分、曲线积分和曲面积分的计算 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
\begin{equation*} | ||
\begin{split} | ||
V &= \int_{0}^{\frac{1}{\sqrt{2}}}\dd{z}\iint\limits_{x^2+y^2\leqslant z^2}\dd{x}\dd{y}+\int_{\frac{1}{\sqrt{2}}}^{1}\dd{z}\iint\limits_{x^2+y^2\leqslant 1-z^2}\dd{x}\dd{y}\\ | ||
&= \int_{0}^{\frac{1}{\sqrt{2}}}\pi z^2\dd{z}+\int_{\frac{1}{\sqrt{2}}}^{1}\pi (1-z^2)\dd{z}\\ | ||
&= \frac{(2-\sqrt{2})}{3}\pi. | ||
\end{split} | ||
\end{equation*} | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
进行一个元的换:\(x=y=\dfrac{\sin\theta}{\sqrt{2}},z = \cos\theta,\theta\in[0,2\pi]\). | ||
|
||
因而\[\dd{s} = \sqrt{2\left(\dfrac{\cos\theta}{\sqrt{2}}\right)^2+(-\sin \theta)^2}\dd{\theta} = \dd{\theta}.\] | ||
|
||
所以 | ||
\begin{equation*} | ||
\begin{split} | ||
\oint\limits_{L}(x^2+y^2+z^2)\dd{s} &= \int_{0}^{2\pi}(\sin^2\theta+\cos\theta)\dd{\theta}\\ | ||
&= \int_{-\pi}^{\pi}(\sin^2\alpha-\cos\alpha)^2\dd{\alpha}\enspace(\theta = \pi+\alpha)\\ | ||
&= 2\int_{0}^{\pi}(\sin^2\alpha-\cos\alpha)^2\dd{\alpha}\\ | ||
&= 2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos^2\beta+\sin\beta)^2\dd{\beta}\enspace(\alpha = \frac{\pi}{2}+\beta)\\ | ||
&= 2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos^4\beta+\sin^2\beta+2\cos^2\beta\sin\beta)\dd{\beta}\\ | ||
&= 2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\sin^4\beta-2\sin^3\beta-\sin^2\beta+2\sin\beta+1)\dd{\beta}\\ | ||
&= 4\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\sin^4\beta-\sin^2\beta+1)\dd{\beta} = \frac{7}{4}\pi. | ||
\end{split} | ||
\end{equation*} | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{3.} | ||
进行一个孔的挖:设\(P=\dfrac{-y}{3x^2+4y^2},Q=\dfrac{x}{3x^2+4y^2}\),由于在任意非原点处,有\[\pdv{P}{y} = \frac{4y^2-3x^2}{(3x^2+4y^2)^2} = \pdv{Q}{x}.\] | ||
我们在原点附近取一个非常小的椭圆曲线\(L'\colon 3x^2+4y^2 = \delta^2\),\(\delta\)充分小,使得\(L'\)完全包含在\(L\)内部,设\(L'\)与\(L\)之间的区域为\(S\),\(L'\)包含的椭圆为\(S'\). 则由格林公式,有 | ||
\begin{equation*} | ||
\begin{split} | ||
\int\limits_{L}\frac{x\dd{y}-y\dd{x}}{3x^2+4y^2} &= \iint\limits_{S}\left(\pdv{Q}{x}-\pdv{P}{y}\right)\dd{x}\dd{y} +\int\limits_{L'}\frac{x\dd{y}-y\dd{x}}{3x^2+4y^2} \\ | ||
&= \frac{1}{\delta^2}\int\limits_{L'}x\dd{y}-y\dd{x}\\ | ||
&= \frac{1}{\delta^2}\iint\limits_{S'}(1+1)\dd{x}\dd{y}\\ | ||
&= \frac{1}{\delta^2}\pi\frac{\delta}{\sqrt{2}} \cdot \frac{\delta}{2} = \frac{\pi}{2\sqrt{3}}. | ||
\end{split} | ||
\end{equation*} | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{4.} | ||
考虑椭球面的参数表示:\(x = \sin\varphi\cos\theta, y = 2\sin\varphi\sin\theta, z = 3\cos\varphi\),其中\(\varphi\in[0,\frac{\pi}{2}],\theta\in[0,2\pi]\). | ||
计算可知\[\frac{\partial(x,y)}{\partial(\varphi,\theta)} = 2\sin\varphi\cos\varphi = \sin 2\varphi\geqslant0,\frac{\partial (y,z)}{\partial(\varphi,\theta)} = 6\sin^2\varphi\cos\theta.\] | ||
由左式可知,参数\((\varphi,\theta)\)决定的法向量是外侧的,由第二类曲面积分的定义: | ||
\begin{equation*} | ||
\begin{split} | ||
\iint\limits_{S}x^3\dd{y}\dd{z} &=\int\limits_{D_{\varphi\theta}}\sin^3\varphi\cos^3\theta\cdot 6\sin^2\varphi\cos\theta\dd{\varphi}\dd{\theta}\\ | ||
&= 6\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\dd{\varphi}\int_{0}^{2\pi}\cos^4\theta\dd{\theta} = \frac{12}{5}\pi. | ||
\end{split} | ||
\end{equation*} | ||
|
||
\noindent{\heiti\textbf{四、}} 一元函数微分学 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
由于 | ||
\begin{equation*} | ||
\begin{cases} | ||
x-y = 1-z\\ | ||
x+y = 1-2z | ||
\end{cases} | ||
\implies | ||
\begin{cases} | ||
x = 1-\dfrac{3}{2}z\\[1.5ex] | ||
y = -\dfrac{1}{2}z | ||
\end{cases} | ||
\end{equation*} | ||
所以\[g(z) = f(x(z),y(z),z) = \dfrac{3}{2}\left(|z|+\left\lvert z-\dfrac{2}{3}\right\rvert\right)\geqslant\frac{3}{2}\left\lvert z-\left(z-\frac{2}{3}\right)\right\rvert = 1.\] | ||
当且仅当\(z\in\left[0,\dfrac{2}{3}\right]\)时取等,所有极小值点为\(\ds \left(1-\frac{3}{2}z,-\frac{z}{2},z\right),z\in\left[0,\frac{2}{3}\right]\). | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
令\(z=0\),有\(y = z = 0\),仅有\(x\)为非零项,则题目所求的极小值点为\((1,0,0)\). | ||
|
||
\noindent{\heiti\textbf{五、}} 重积分 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
给出两种方法: | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{法一.} | ||
因为\(f(x,1) = f(1,y) = 0\),所以\[f_x(x,1) = f_y(1,y) = 0.\] | ||
|
||
并且由于被积函数\(xyf_{xy}(x,y)\)在区域\(D\)上连续,所以我们可以交换积分次序. | ||
\begin{equation*} | ||
\begin{split} | ||
\iint\limits_{D}xyf_{xy}(x,y)\dd{x}\dd{y} &= \int_{0}^{1}x\dd{x}\int_{0}^{1}yf_{xy}(x,y)\dd{y}\\ | ||
&= \int_{0}^{1}x\dd{x}\int_{0}^{1}y\dd{f}_{x}(x,y)\\ | ||
&= \int_{0}^{1}x\dd{x}\left(\eval{yf_x(x,y)}_0^1-\int_{0}^{1}f_x(x,y)\dd{y}\right)\\ | ||
&= -\iint\limits_{D}xf_x(x,y)\dd{x}\dd{y}\\ | ||
&= -\int_{0}^{1}\dd{y}\int_{0}^{1}xf_x(x,y)\dd{x}\\ | ||
&= -\int_{0}^{1}\dd{y}\left(\eval{xf(x,y)}_0^1-\int_{0}^{1}f(x,y)\dd{x}\right)\\ | ||
&= \iint\limits_{D}f(x,y)\dd{x}\dd{y}. | ||
\end{split} | ||
\end{equation*} | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{法二.} | ||
设\(L\)为区域\(D = [0,1]\times[0,1]\)的边界曲线,直接计算曲线积分并利用Green公式得: | ||
\[0 = \int\limits_{L}xyf_y(x,y)\dd{y}-xyf_x(x,y)\dd{x} = \iint\limits_{D}(yf_y(x,y)+xf_x(x,y)+2xyf_{xy}(x,y))\dd{x}\dd{y}.\] | ||
所以\[\iint\limits_{D}xyf_{xy}(x,y)\dd{x}\dd{y} = \frac{1}{2}\iint\limits_{D}y(f_y(x,y)+xf_x(x,y))\dd{x}\dd{y}.\] | ||
并且\[0 = \int_{L}xf(x,y)\dd{y}-yf(x,y)\dd{x} = \iint\limits_{D}(xf_x(x,y)+yf_y(x,y)+2f(x,y))\dd{x}\dd{y}\] | ||
所以\[\iint\limits_{D}f(x,y)\dd{x}\dd{y} = \frac{1}{2}\iint\limits_{D}(yf_y(x,y)+xf_x(x,y))\dd{x}\dd{y} = \iint\limits_{D}xyf_{xy}(x,y)\dd{x}\dd{y}.\] | ||
|
||
\noindent{\heiti\textbf{六、}}Fourier级数 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
设\(u_0(x) = \dfrac{a_0}{2}\),\(u_n(x)=a_n\cos nx+b_n\sin nx\enspace (n=1,2,\ldots)\). 又由于\[|u_n(x)|=|a_n\cos nx+b_n\sin nx|\leqslant|a_n|+|b_n|\leqslant\frac{M}{n^3},\enspace n\geqslant 1.\] | ||
所以\[\left\lvert\frac{a_0}{2}\right\rvert+\sum_{n=1}^\infty |u_n(x)|\leqslant\left\lvert\frac{a_0}{2}\right\rvert+\sum_{n=1}^{\infty}\frac{M}{n^3}\] | ||
通过比较判别法显然可以得出该三角级数绝对收敛,故而收敛. 并且,由Weierstrass判别法,其也是一致收敛的. | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
由上,该三角级数一致收敛于其和函数\(S(x) = \dfrac{a_0}{2}+\ds \sum_{n=1}^{\infty}(a_n\cos nx+b_n\sin nx)\),因而其可以逐项积分. 由三角函数族的正交性,重复Fourier系数的构造过程: | ||
\begin{gather*} | ||
\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\dd{x} = a_0 + \frac{1}{\pi}\sum_{n=1}^{\infty}a_k\int_{-\pi}^{\pi}\cos kx\dd{x}+\frac{1}{\pi}\sum_{n=1}^{\infty}b_k\int_{-\pi}^{\pi}\sin kx\dd{x};\\ | ||
\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx\dd{x} = \frac{1}{\pi}\sum_{n=1}^{\infty}a_k\int_{-\pi}^{\pi}\cos kx\cos nx\dd{x}+\frac{1}{\pi}\sum_{n=1}^{\infty}b_k\int_{-\pi}^{\pi}\sin kx\cos nx\dd{x} = a_n;\\ | ||
\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx\dd{x} = \frac{1}{\pi}\sum_{n=1}^{\infty}a_k\int_{-\pi}^{\pi}\cos kx\sin nx\dd{x}+\frac{1}{\pi}\sum_{n=1}^{\infty}b_k\int_{-\pi}^{\pi}\sin kx\sin nx\dd{x} = b_n. | ||
\end{gather*} | ||
即可得知其为Fourier级数. | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{3.}我们首先说明此三角级数可以逐项求导:由于本三角级数一致收敛,显然其点态收敛于其和函数;并且三角级数的每一项都连续可导;所以我们只用证明其逐项求导的级数一致收敛:由 | ||
\begin{equation*} | ||
\begin{split} | ||
\sum_{n=1}^{\infty}\left\lvert\dv{x}(a_n\cos nx+b_n\sin nx)\right\rvert &= \sum_{n=1}^{\infty}|n(-a_n\sin nx+b_n\cos nx)|\\ | ||
&\leqslant\sum_{n=1}^{\infty}n(|a_n|+|b_n|)\leqslant\sum_{n=1}^{\infty}\frac{M}{n^2}. | ||
\end{split} | ||
\end{equation*} | ||
并根据Weierstrass判别法,其逐项求导的级数一致收敛. 这样此三角级数逐项可导,并且其导数为导数的级数,并且连续. | ||
|
||
\clearpage | ||
\noindent{\heiti\textbf{七、}} 隐函数定理 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
本题题干有误,应为:\(F(x,y)\)在带状区域\(x\in[a,b]\)存在连续一阶偏导,\(F_x(x,y)\)有正值下界,证明:在\((x_0,y_0)\)附近可以由\(F(x_0,y_0) = 0\)唯一确定一个隐函数\(y = f(x)\). | ||
|
||
\noindent{\heiti\textbf{八、}} 函数项级数 | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{1.} | ||
设\[f(x) = \cos(\dfrac{\pi}{2}x^{\frac{1}{n}}) - \dfrac{\pi}{n}(1-x), x\in\left[\frac{1}{2}, 1\right].\] | ||
由\(\sin x\geqslant \dfrac{2}{\pi}x\),对\(f(x)\)求导得\[f'(x) = \frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\sin(\frac{\pi}{2}x^{\frac{1}{n}})\right)\geqslant\frac{\pi}{2n}\left(2-x^{\frac{1}{n}-1}\frac{2}{\pi}\cdot\frac{\pi}{2}x^{\frac{1}{n}}\right)\geqslant\frac{\pi}{2n}(2-(1/2)^{-1}) = 0.\] | ||
所以\(f(x)\)在\(\left[\dfrac{1}{2}, 1\right]\)上单调递增,且\(f(1) = 0\),所以\(f(x)\leqslant0\),即\[\cos(\frac{\pi}{2}x^{\frac{1}{n}})\leqslant\frac{\pi}{n}(1-x), x\in\left[\dfrac{1}{2}, 1\right].\] | ||
|
||
\hangindent 2em | ||
\hangafter=0 | ||
\noindent | ||
\textbf{2.} | ||
由\[\cos(\frac{\pi}{2}x^{\frac{1}{n}})\frac{x^n}{n^2}\leqslant\frac{1}{n^2},x\in\left[\frac{1}{2},1\right].\] | ||
且数项级数\(\ds \sum_{n=1}^{\infty}\dfrac{1}{n^2}\)收敛,所以由Weierstrass判别法,原级数在\(\left[\dfrac{1}{2}, 1\right]\)上一致收敛. | ||
|
||
\end{document} |
Oops, something went wrong.