Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ops which has addings in internal #675

Merged
merged 1 commit into from
Jan 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 11 additions & 2 deletions include/tim/vx/ops/scatternd_onnx_v16.h
Original file line number Diff line number Diff line change
Expand Up @@ -34,14 +34,23 @@ namespace ops {
*
* Scatter updates into a new tensor according to indices.
*
* - shape : The shape of the resulting tensor.
* - reduction: Type of reduction to apply: none (default), add, mul, max, min.
*/

class ScatterND_ONNX_V16 : public BuiltinOp {
public:
ScatterND_ONNX_V16(Graph* graph);
enum ReductionType {
REDUCTION_NONE,
REDUCTION_ADD,
REDUCTION_MUL,
REDUCTION_MAX,
REDUCTION_MIN
};
ScatterND_ONNX_V16(Graph* graph, ReductionType reduction = ReductionType::REDUCTION_NONE);

std::shared_ptr<Operation> Clone(std::shared_ptr<Graph>& graph) const override;
protected:
ReductionType reduction_;
};

} // namespace ops
Expand Down
10 changes: 5 additions & 5 deletions include/tim/vx/ops/simple_operations.h
Original file line number Diff line number Diff line change
Expand Up @@ -83,14 +83,14 @@ namespace ops {
* returns the largest integer less than or equal to a given number.
*
* ## Ceil
*
*
* returns the largest integer more than or equal to a given number.
*
*
* ## Cast
*
* Change the format from input tensor to output tensor. This operation ignores
* the scale and zeroPoint of quanized tensors.
*
*
* ## Rcp
* Computes the reciprocal of input element-wise.
*/
Expand All @@ -99,8 +99,8 @@ DECLARE_SIMPLE_OP(DataConvert)
DECLARE_SIMPLE_OP(Neg)
DECLARE_SIMPLE_OP(Abs)
DECLARE_SIMPLE_OP(Sin)
// TODO(jiangbo): enable it when internal ops supports `Cos`
//DECLARE_SIMPLE_OP(Cos)
DECLARE_SIMPLE_OP(Cos)
DECLARE_SIMPLE_OP(Tan)
DECLARE_SIMPLE_OP(Exp)
DECLARE_SIMPLE_OP(Log)
DECLARE_SIMPLE_OP(Sqrt)
Expand Down
24 changes: 23 additions & 1 deletion src/tim/vx/ops/bidirectional_sequence_lstm.cc
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,16 @@ class BidirectionalSequenceLstmImpl : public OpImpl {
BI_LSTM_BW_INPUT_LAYERNORM_C = 54,
BI_LSTM_BW_INPUT_LAYERNORM_O = 55,

BI_LSTM_FW_INPUT_BIAS_R2I = 56,
BI_LSTM_FW_INPUT_BIAS_R2F = 57,
BI_LSTM_FW_INPUT_BIAS_R2C = 58,
BI_LSTM_FW_INPUT_BIAS_R2O = 59,

BI_LSTM_BW_INPUT_BIAS_R2I = 60,
BI_LSTM_BW_INPUT_BIAS_R2F = 61,
BI_LSTM_BW_INPUT_BIAS_R2C = 62,
BI_LSTM_BW_INPUT_BIAS_R2O = 63,

INPUT_CNT,

BI_LSTM_FW_OUTPUT_OUTPUT = 0,
Expand Down Expand Up @@ -147,7 +157,7 @@ class BidirectionalSequenceLstmImpl : public OpImpl {
const std::shared_ptr<Tensor>& tensor) override {
in_tensors_[input_tensor_index] = tensor;

if (this->input_tensor_index == INPUT_CNT - 1) {
if (this->input_tensor_index >= INPUT_CNT - 9) {
// Get all input tensor
lstm_forward_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
reverse_input_->BindInput(in_tensors_[BI_LSTM_INPUT_INPUT]);
Expand Down Expand Up @@ -183,6 +193,12 @@ class BidirectionalSequenceLstmImpl : public OpImpl {
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_LAYERNORM_O]);
if(this->input_tensor_index == input_cnt_ - 1) {
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_R2I]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_R2F]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_R2C]);
lstm_forward_->BindInput(in_tensors_[BI_LSTM_FW_INPUT_BIAS_R2O]);
}

lstm_backward_->BindInput(bw_input_tensor_);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_H_STATE]);
Expand Down Expand Up @@ -214,6 +230,12 @@ class BidirectionalSequenceLstmImpl : public OpImpl {
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_LAYERNORM_O]);
if(this->input_tensor_index == input_cnt_ - 1) {
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_R2I]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_R2F]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_R2C]);
lstm_backward_->BindInput(in_tensors_[BI_LSTM_BW_INPUT_BIAS_R2O]);
}
}
this->input_tensor_index++;
return *this;
Expand Down
24 changes: 22 additions & 2 deletions src/tim/vx/ops/scatternd_onnx_v16.cc
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,29 @@
namespace tim {
namespace vx {
namespace ops {
vsi_nn_reduction_type_e downcast_reduction_type (ScatterND_ONNX_V16::ReductionType type) {
switch (type)
{
case ScatterND_ONNX_V16::ReductionType::REDUCTION_NONE:
return VSI_NN_REDUCTION_TYPE_NONE;
case ScatterND_ONNX_V16::ReductionType::REDUCTION_ADD:
return VSI_NN_REDUCTION_TYPE_ADD;
case ScatterND_ONNX_V16::ReductionType::REDUCTION_MUL:
return VSI_NN_REDUCTION_TYPE_MUL;
case ScatterND_ONNX_V16::ReductionType::REDUCTION_MAX:
return VSI_NN_REDUCTION_TYPE_MAX;
case ScatterND_ONNX_V16::ReductionType::REDUCTION_MIN:
return VSI_NN_REDUCTION_TYPE_MIN;
default:
return VSI_NN_REDUCTION_TYPE_NONE;
}
}

ScatterND_ONNX_V16::ScatterND_ONNX_V16(Graph* graph, ReductionType reduction)
: BuiltinOp(graph, VSI_NN_OP_SCATTER_ND_UPDATE),
reduction_(reduction) {
this->impl()->node()->nn_param.scatter_nd_update.reduction = downcast_reduction_type(reduction_);

ScatterND_ONNX_V16::ScatterND_ONNX_V16(Graph* graph)
: BuiltinOp(graph, VSI_NN_OP_SCATTER_ND_UPDATE) {
}

std::shared_ptr<Operation> ScatterND_ONNX_V16::Clone(std::shared_ptr<Graph>& graph) const {
Expand Down
4 changes: 2 additions & 2 deletions src/tim/vx/ops/simple_operations.cc
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,8 @@ DEFINE_SIMPLE_OP(DataConvert, VSI_NN_OP_DATACONVERT)
DEFINE_SIMPLE_OP(Neg, VSI_NN_OP_NEG)
DEFINE_SIMPLE_OP(Abs, VSI_NN_OP_ABS)
DEFINE_SIMPLE_OP(Sin, VSI_NN_OP_SIN)
// TODO(jiangbo): enable it when ovxlib supports `Cos`
//DEFINE_SIMPLE_OP(Cos, VSI_NN_OP_COS)
DEFINE_SIMPLE_OP(Cos, VSI_NN_OP_COS)
DEFINE_SIMPLE_OP(Tan, VSI_NN_OP_TAN)
DEFINE_SIMPLE_OP(Exp, VSI_NN_OP_EXP)
DEFINE_SIMPLE_OP(Log, VSI_NN_OP_LOG)
DEFINE_SIMPLE_OP(Sqrt, VSI_NN_OP_SQRT)
Expand Down
76 changes: 66 additions & 10 deletions src/tim/vx/ops/simple_operations_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,8 @@ TEST(Floor, shape_5_1_fp32) {

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto add = graph->CreateOperation<tim::vx::ops::Floor>();
(*add).BindInputs({input_tensor}).BindOutputs({output_tensor});
auto op = graph->CreateOperation<tim::vx::ops::Floor>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
Expand Down Expand Up @@ -79,8 +79,8 @@ TEST(Round, shape_15_1_fp32) {

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto add = graph->CreateOperation<tim::vx::ops::Round>();
(*add).BindInputs({input_tensor}).BindOutputs({output_tensor});
auto op = graph->CreateOperation<tim::vx::ops::Round>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
Expand All @@ -107,8 +107,8 @@ TEST(Ceil, shape_5_1_fp32) {

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto add = graph->CreateOperation<tim::vx::ops::Ceil>();
(*add).BindInputs({input_tensor}).BindOutputs({output_tensor});
auto op = graph->CreateOperation<tim::vx::ops::Ceil>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
Expand All @@ -135,8 +135,8 @@ TEST(Cast, shape_5_1_fp32_to_int32) {

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto add = graph->CreateOperation<tim::vx::ops::Cast>();
(*add).BindInputs({input_tensor}).BindOutputs({output_tensor});
auto op = graph->CreateOperation<tim::vx::ops::Cast>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
Expand Down Expand Up @@ -253,12 +253,68 @@ TEST(Rcp, shape_5_1_fp32) {

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto add = graph->CreateOperation<tim::vx::ops::Rcp>();
(*add).BindInputs({input_tensor}).BindOutputs({output_tensor});
auto op = graph->CreateOperation<tim::vx::ops::Rcp>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(5, 0);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}

TEST(Cos, shape_5_1_fp32) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();

tim::vx::ShapeType io_shape({5, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);

auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);

std::vector<float> in_data = { 1.0, 0.0, -1.0, 0.5, -0.5};
std::vector<float> golden = {0.5403023, 1, 0.5403023, 0.87758255, 0.87758255};

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto op = graph->CreateOperation<tim::vx::ops::Cos>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(5);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-5f));
}

TEST(Tan, shape_5_1_fp32) {
auto ctx = tim::vx::Context::Create();
auto graph = ctx->CreateGraph();

tim::vx::ShapeType io_shape({5, 1});
tim::vx::TensorSpec input_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::INPUT);
tim::vx::TensorSpec output_spec(tim::vx::DataType::FLOAT32,
io_shape, tim::vx::TensorAttribute::OUTPUT);

auto input_tensor = graph->CreateTensor(input_spec);
auto output_tensor = graph->CreateTensor(output_spec);

std::vector<float> in_data = { 1, 0, 1.5, 0.5, -0.5};
std::vector<float> golden = { 1.5574077, 0, 14.10142, 0.5463025, -0.5463025};

EXPECT_TRUE(input_tensor->CopyDataToTensor(in_data.data(), in_data.size()*4));

auto op = graph->CreateOperation<tim::vx::ops::Tan>();
(*op).BindInputs({input_tensor}).BindOutputs({output_tensor});

EXPECT_TRUE(graph->Compile());
EXPECT_TRUE(graph->Run());
std::vector<float> output(5);
EXPECT_TRUE(output_tensor->CopyDataFromTensor(output.data()));
EXPECT_TRUE(ArraysMatch(golden, output, 1e-4f));
}
Loading