Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: keep null values in pivot index columns (TCTC-9902) #2314

Merged
merged 3 commits into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions server/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

### Fixed

- Pandas: the `pivot` step now keeps null values in index columns and handle them as any other values.
- Pandas & Pypika: the `count` aggregation of the aggregate step now properly counts nulls

## [0.48.6] - 2024-12-11
Expand Down
13 changes: 13 additions & 0 deletions server/src/weaverbird/backends/pandas_executor/steps/pivot.py
Original file line number Diff line number Diff line change
@@ -1,20 +1,33 @@
from numpy import nan as nan_value
from pandas import DataFrame

from weaverbird.backends.pandas_executor.types import DomainRetriever, PipelineExecutor
from weaverbird.pipeline.steps import PivotStep

PIVOT_NULL_VALUE = "__WEAVERBIRD_PIVOT_NULL_VALUE__"


def execute_pivot(
step: PivotStep,
df: DataFrame,
domain_retriever: DomainRetriever = None,
execute_pipeline: PipelineExecutor = None,
) -> DataFrame:
# Create alias for null values in indexed columns before running pivot to avoid removing null values
for idx_column in step.index:
df[idx_column] = df[idx_column].fillna(PIVOT_NULL_VALUE)
df[PIVOT_NULL_VALUE] = nan_value

pivoted_df = df.pivot_table(
values=step.value_column,
index=step.index,
columns=step.column_to_pivot,
aggfunc="mean" if step.agg_function == "avg" else step.agg_function,
).reset_index()

# Replace alias with null value
for idx_column in step.index:
pivoted_df[idx_column] = pivoted_df[idx_column].replace(PIVOT_NULL_VALUE, nan_value)

pivoted_df.columns.name = None
return pivoted_df
68 changes: 68 additions & 0 deletions server/tests/backends/fixtures/pivot/with_nulls.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
exclude:
- athena_pypika
- bigquery_pypika
- mysql_pypika
- postgres_pypika
- redshift_pypika
- snowflake_pypika
step:
pipeline:
- name: pivot
index:
- LABEL
- TYPE
column_to_pivot: ALPHA
value_column: COST
agg_function: sum
input:
schema:
fields:
- name: LABEL
type: integer
- name: TYPE
type: string
- name: COST
type: integer
- name: ALPHA
type: string
pandas_version: 0.20.0
data:
- LABEL: 1
TYPE: PARENT
COST: 5
ALPHA: ALPHA
- LABEL: 2
TYPE: PARENT
COST: 100
ALPHA: ALPHA
- LABEL: 1
TYPE:
COST: 2
ALPHA: ALPHA
- LABEL: 2
TYPE:
COST: 28
ALPHA: ALPHA
expected:
schema:
fields:
- name: LABEL
type: integer
- name: TYPE
type: string
- name: ALPHA
type: integer
pandas_version: 0.20.0
data:
- LABEL: 1
TYPE: PARENT
ALPHA: 5
- LABEL: 1
TYPE:
ALPHA: 2
- LABEL: 2
TYPE: PARENT
ALPHA: 100
- LABEL: 2
TYPE:
ALPHA: 28
2 changes: 1 addition & 1 deletion server/tests/steps/test_pivot.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def test_benchmark_pivot(benchmark):

step = PivotStep(
name="pivot",
index=["group"],
index=["id"],
column_to_pivot="group",
value_column="value",
agg_function="avg",
Expand Down
Loading