Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added voc2coco for rotated bounding boxes #12

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,9 @@
Then you can run the `voc2coco.py` script to generate a COCO data formatted JSON file for you.
```
python voc2coco.py ./data/VOC/Annotations ./data/coco/output.json
python voc2coco_rotate.py ./data/VOC/Annotations ./data/coco/output.json
```
Then you can run the following Jupyter notebook to visualize the coco annotations. `COCO_Image_Viewer.ipynb`


Further instruction on how to create your own datasets, read the [tutorial](https://www.dlology.com/blog/how-to-create-custom-coco-data-set-for-object-detection/).
Further instruction on how to create your own datasets, read the [tutorial](https://www.dlology.com/blog/how-to-create-custom-coco-data-set-for-object-detection/).
152 changes: 152 additions & 0 deletions voc2coco_rotate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
#!/usr/bin/python

# pip install lxml

import sys
import os
import json
import xml.etree.ElementTree as ET
import glob

START_BOUNDING_BOX_ID = 1
PRE_DEFINE_CATEGORIES = None
# If necessary, pre-define category and its id
# PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4,
# "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9,
# "cow": 10, "diningtable": 11, "dog": 12, "horse": 13,
# "motorbike": 14, "person": 15, "pottedplant": 16,
# "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}


def get(root, name):
vars = root.findall(name)
return vars


def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise ValueError("Can not find %s in %s." % (name, root.tag))
if length > 0 and len(vars) != length:
raise ValueError(
"The size of %s is supposed to be %d, but is %d."
% (name, length, len(vars))
)
if length == 1:
vars = vars[0]
return vars


def get_filename_as_int(filename):
try:
filename = filename.replace("\\", "/")
filename = os.path.splitext(os.path.basename(filename))[0]
return int(filename)
except:
raise ValueError("Filename %s is supposed to be an integer." % (filename))


def get_categories(xml_files):
"""Generate category name to id mapping from a list of xml files.

Arguments:
xml_files {list} -- A list of xml file paths.

Returns:
dict -- category name to id mapping.
"""
classes_names = []
for xml_file in xml_files:
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall("object"):
classes_names.append(member[0].text)
classes_names = list(set(classes_names))
classes_names.sort()
return {name: i for i, name in enumerate(classes_names)}


def convert(xml_files, json_file):
json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []}
if PRE_DEFINE_CATEGORIES is not None:
categories = PRE_DEFINE_CATEGORIES
else:
categories = get_categories(xml_files)
bnd_id = START_BOUNDING_BOX_ID
for xml_file in xml_files:
tree = ET.parse(xml_file)
root = tree.getroot()
path = get(root, "path")
if len(path) == 1:
filename = os.path.basename(path[0].text)
elif len(path) == 0:
filename = get_and_check(root, "filename", 1).text
else:
raise ValueError("%d paths found in %s" % (len(path), xml_file))
## The filename must be a number
image_id = get_filename_as_int(filename)
size = get_and_check(root, "size", 1)
width = int(get_and_check(size, "width", 1).text)
height = int(get_and_check(size, "height", 1).text)
image = {
"file_name": filename,
"height": height,
"width": width,
"id": image_id,
}
json_dict["images"].append(image)
## Currently we do not support segmentation.
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, "object"):
category = get_and_check(obj, "name", 1).text
if category not in categories:
new_id = len(categories)
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, "robndbox", 1)
xmin = int(float(get_and_check(bndbox, "cx", 1).text)) - 1
ymin = int(float(get_and_check(bndbox, "cy", 1).text)) - 1
width = int(float(get_and_check(bndbox, "w", 1).text))
height = int(float(get_and_check(bndbox, "h", 1).text))
theta = round(float(get_and_check(bndbox, "angle", 1).text),2)

ann = {
"area": width * height,
"iscrowd": 0,
"image_id": image_id,
"bbox": [xmin, ymin, width, height, theta],
"category_id": category_id,
"id": bnd_id,
"ignore": 0,
"segmentation": [],
}
json_dict["annotations"].append(ann)
bnd_id = bnd_id + 1

for cate, cid in categories.items():
cat = {"supercategory": "none", "id": cid, "name": cate}
json_dict["categories"].append(cat)

os.makedirs(os.path.dirname(json_file), exist_ok=True)
json_fp = open(json_file, "w")
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser(
description="Convert Pascal VOC annotation to COCO format."
)
parser.add_argument("xml_dir", help="Directory path to xml files.", type=str)
parser.add_argument("json_file", help="Output COCO format json file.", type=str)
args = parser.parse_args()
xml_files = glob.glob(os.path.join(args.xml_dir, "*.xml"))

# If you want to do train/test split, you can pass a subset of xml files to convert function.
print("Number of xml files: {}".format(len(xml_files)))
convert(xml_files, args.json_file)
print("Success: {}".format(args.json_file))