Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement genetic algorithm for optimizing continuous functions #12378

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
317 changes: 317 additions & 0 deletions genetic_algorithm/genetic_algorithm_optimization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,317 @@
import random
from collections.abc import Callable, Sequence
from concurrent.futures import ThreadPoolExecutor

import numpy as np

# Parameters
N_POPULATION = 100 # Population size
N_GENERATIONS = 500 # Maximum number of generations
N_SELECTED = 50 # Number of parents selected for the next generation
MUTATION_PROBABILITY = 0.1 # Mutation probability
CROSSOVER_RATE = 0.8 # Probability of crossover
SEARCH_SPACE = (-10, 10) # Search space for the variables

# Random number generator
rng = np.random.default_rng()


class GeneticAlgorithm:
def __init__(
self,
function: Callable[[float, float], float],
bounds: Sequence[tuple[int | float, int | float]],
population_size: int,
generations: int,
mutation_prob: float,
crossover_rate: float,
maximize: bool = True,
) -> None:
self.function = function # Target function to optimize
self.bounds = bounds # Search space bounds (for each variable)
self.population_size = population_size
self.generations = generations
self.mutation_prob = mutation_prob
self.crossover_rate = crossover_rate
self.maximize = maximize
self.dim = len(bounds) # Dimensionality of the function (number of variables)

# Initialize population
self.population = self.initialize_population()

def initialize_population(self) -> list[np.ndarray]:

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As there is no test file in this pull request nor any test function or class in the file genetic_algorithm/genetic_algorithm_optimization.py, please provide doctest for the function initialize_population

"""
Initialize the population with random individuals within the search space.

Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=5,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> len(ga.initialize_population())
5 # The population size should be equal to 5.
>>> all(len(ind) == 2 for ind in ga.initialize_population())
# Each individual should have 2 variables
True
"""
return [
np.array([rng.uniform(b[0], b[1]) for b in self.bounds])
for _ in range(self.population_size)
]

def fitness(self, individual: np.ndarray) -> float:

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As there is no test file in this pull request nor any test function or class in the file genetic_algorithm/genetic_algorithm_optimization.py, please provide doctest for the function fitness

"""
Calculate the fitness value (function value) for an individual.

Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> individual = np.array([1.0, 2.0])
>>> ga.fitness(individual)
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing
>>> ga.maximize = True
>>> ga.fitness(individual)
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing
"""
value = float(self.function(*individual)) # Ensure fitness is a float
return value if self.maximize else -value # If minimizing, invert the fitness

def select_parents(

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As there is no test file in this pull request nor any test function or class in the file genetic_algorithm/genetic_algorithm_optimization.py, please provide doctest for the function select_parents

self, population_score: list[tuple[np.ndarray, float]]
) -> list[np.ndarray]:
"""
Select top N_SELECTED parents based on fitness.

Example:
UTSAVS26 marked this conversation as resolved.
Show resolved Hide resolved
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> population_score = [
... (np.array([1.0, 2.0]), 5.0),
... (np.array([-1.0, -2.0]), 5.0),
... (np.array([0.0, 0.0]), 0.0),
... ]
>>> selected_parents = ga.select_parents(population_score)
>>> len(selected_parents)
2 # Should select the two parents with the best fitness scores.
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
# Parent 1 should be [1.0, 2.0]
True
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0]))
# Parent 2 should be [-1.0, -2.0]
True
"""

if not population_score:
raise ValueError("Population score is empty, cannot select parents.")

population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
selected_count = min(N_SELECTED, len(population_score))
return [ind for ind, _ in population_score[:selected_count]]

def crossover(
self, parent1: np.ndarray, parent2: np.ndarray
) -> tuple[np.ndarray, np.ndarray]:
"""
Perform uniform crossover between two parents to generate offspring.

Args:
parent1 (np.ndarray): The first parent.
parent2 (np.ndarray): The second parent.
Returns:
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover.

Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4])
>>> len(ga.crossover(parent1, parent2)) == 2
True
"""
if random.random() < self.crossover_rate:
cross_point = random.randint(1, self.dim - 1)
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:]))
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:]))
return child1, child2
return parent1, parent2

def mutate(self, individual: np.ndarray) -> np.ndarray:
"""
Apply mutation to an individual.

Args:
individual (np.ndarray): The individual to mutate.

Returns:
np.ndarray: The mutated individual.

Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> ind = np.array([1.0, 2.0])
>>> mutated = ga.mutate(ind)
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions
True
"""
for i in range(self.dim):
if random.random() < self.mutation_prob:
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1])
return individual

def evaluate_population(self) -> list[tuple[np.ndarray, float]]:
"""
Evaluate the fitness of the entire population in parallel.

Returns:
list[tuple[np.ndarray, float]]:
The population with their respective fitness values.

Example:
>>> ga = GeneticAlgorithm(
... lambda x, y: -(x**2 + y**2),
... [(-10, 10), (-10, 10)],
... 10, 100, 0.1, 0.8, True
... )
>>> eval_population = ga.evaluate_population()
>>> len(eval_population) == ga.population_size # Ensure population size
True
>>> all(
... isinstance(ind, tuple) and isinstance(ind[1], float)
... for ind in eval_population
... )
True
"""
with ThreadPoolExecutor() as executor:
return list(
executor.map(
lambda individual: (individual, self.fitness(individual)),
self.population,
)
)

def evolve(self, verbose: bool = True) -> np.ndarray:
"""
Evolve the population over the generations to find the best solution.

Args:
verbose (bool): If True, prints the progress of the generations.

Returns:
np.ndarray: The best individual found during the evolution process.

Example:
>>> ga = GeneticAlgorithm(
... function=lambda x, y: x**2 + y**2,
... bounds=[(-10, 10), (-10, 10)],
... population_size=10,
... generations=10,
... mutation_prob=0.1,
... crossover_rate=0.8,
... maximize=False
... )
>>> best_solution = ga.evolve(verbose=False)
>>> len(best_solution)
2 # The best solution should be a 2-element array (var_x, var_y)
>>> isinstance(best_solution[0], float) # First element should be a float
True
>>> isinstance(best_solution[1], float) # Second element should be a float
True
"""
best_individual = None
for generation in range(self.generations):
# Evaluate population fitness (multithreaded)
population_score = self.evaluate_population()

# Ensure population_score isn't empty
if not population_score:
raise ValueError("Population score is empty. No individuals evaluated.")

# Check the best individual
best_individual = max(
population_score, key=lambda score_tuple: score_tuple[1]
)[0]
best_fitness = self.fitness(best_individual)

# Select parents for next generation
parents = self.select_parents(population_score)
next_generation = []

# Generate offspring using crossover and mutation
for i in range(0, len(parents), 2):
parent1, parent2 = (
parents[i],
parents[(i + 1) % len(parents)],
) # Wrap around for odd cases
child1, child2 = self.crossover(parent1, parent2)
next_generation.append(self.mutate(child1))
next_generation.append(self.mutate(child2))

# Ensure population size remains the same
self.population = next_generation[: self.population_size]

if verbose and generation % 10 == 0:
print(f"Generation {generation}: Best Fitness = {best_fitness}")

return best_individual


# Example target function for optimization
def target_function(var_x: float, var_y: float) -> float:
"""
Example target function (parabola) for optimization.
Args:
var_x (float): The x-coordinate.
var_y (float): The y-coordinate.
Returns:
float: The value of the function at (var_x, var_y).

Example:
>>> target_function(0, 0)
0
>>> target_function(1, 1)
2
"""
return var_x**2 + var_y**2 # Simple parabolic surface (minimization)


# Set bounds for the variables (var_x, var_y)
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10

# Instantiate and run the genetic algorithm
ga = GeneticAlgorithm(
function=target_function,
bounds=bounds,
population_size=N_POPULATION,
generations=N_GENERATIONS,
mutation_prob=MUTATION_PROBABILITY,
crossover_rate=CROSSOVER_RATE,
maximize=False, # Minimize the function
)

best_solution = ga.evolve()
print(f"Best solution found: {best_solution}")
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}")
Loading