-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Implement genetic algorithm for optimizing continuous functions #12378
base: master
Are you sure you want to change the base?
Changes from 6 commits
39be73f
c9c9639
d62f39f
dbd29ae
84b29c0
9049228
cdb28e5
20184aa
064704b
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,317 @@ | ||
import random | ||
from collections.abc import Callable, Sequence | ||
from concurrent.futures import ThreadPoolExecutor | ||
|
||
import numpy as np | ||
|
||
# Parameters | ||
N_POPULATION = 100 # Population size | ||
N_GENERATIONS = 500 # Maximum number of generations | ||
N_SELECTED = 50 # Number of parents selected for the next generation | ||
MUTATION_PROBABILITY = 0.1 # Mutation probability | ||
CROSSOVER_RATE = 0.8 # Probability of crossover | ||
SEARCH_SPACE = (-10, 10) # Search space for the variables | ||
|
||
# Random number generator | ||
rng = np.random.default_rng() | ||
|
||
|
||
class GeneticAlgorithm: | ||
def __init__( | ||
self, | ||
function: Callable[[float, float], float], | ||
bounds: Sequence[tuple[int | float, int | float]], | ||
population_size: int, | ||
generations: int, | ||
mutation_prob: float, | ||
crossover_rate: float, | ||
maximize: bool = True, | ||
) -> None: | ||
self.function = function # Target function to optimize | ||
self.bounds = bounds # Search space bounds (for each variable) | ||
self.population_size = population_size | ||
self.generations = generations | ||
self.mutation_prob = mutation_prob | ||
self.crossover_rate = crossover_rate | ||
self.maximize = maximize | ||
self.dim = len(bounds) # Dimensionality of the function (number of variables) | ||
|
||
# Initialize population | ||
self.population = self.initialize_population() | ||
|
||
def initialize_population(self) -> list[np.ndarray]: | ||
""" | ||
Initialize the population with random individuals within the search space. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... function=lambda x, y: x**2 + y**2, | ||
... bounds=[(-10, 10), (-10, 10)], | ||
... population_size=5, | ||
... generations=10, | ||
... mutation_prob=0.1, | ||
... crossover_rate=0.8, | ||
... maximize=False | ||
... ) | ||
>>> len(ga.initialize_population()) | ||
5 # The population size should be equal to 5. | ||
>>> all(len(ind) == 2 for ind in ga.initialize_population()) | ||
# Each individual should have 2 variables | ||
True | ||
""" | ||
return [ | ||
np.array([rng.uniform(b[0], b[1]) for b in self.bounds]) | ||
for _ in range(self.population_size) | ||
] | ||
|
||
def fitness(self, individual: np.ndarray) -> float: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. As there is no test file in this pull request nor any test function or class in the file |
||
""" | ||
Calculate the fitness value (function value) for an individual. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... function=lambda x, y: x**2 + y**2, | ||
... bounds=[(-10, 10), (-10, 10)], | ||
... population_size=10, | ||
... generations=10, | ||
... mutation_prob=0.1, | ||
... crossover_rate=0.8, | ||
... maximize=False | ||
... ) | ||
>>> individual = np.array([1.0, 2.0]) | ||
>>> ga.fitness(individual) | ||
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing | ||
>>> ga.maximize = True | ||
>>> ga.fitness(individual) | ||
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing | ||
""" | ||
value = float(self.function(*individual)) # Ensure fitness is a float | ||
return value if self.maximize else -value # If minimizing, invert the fitness | ||
|
||
def select_parents( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. As there is no test file in this pull request nor any test function or class in the file |
||
self, population_score: list[tuple[np.ndarray, float]] | ||
) -> list[np.ndarray]: | ||
""" | ||
Select top N_SELECTED parents based on fitness. | ||
|
||
Example: | ||
UTSAVS26 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
>>> ga = GeneticAlgorithm( | ||
... function=lambda x, y: x**2 + y**2, | ||
... bounds=[(-10, 10), (-10, 10)], | ||
... population_size=10, | ||
... generations=10, | ||
... mutation_prob=0.1, | ||
... crossover_rate=0.8, | ||
... maximize=False | ||
... ) | ||
>>> population_score = [ | ||
... (np.array([1.0, 2.0]), 5.0), | ||
... (np.array([-1.0, -2.0]), 5.0), | ||
... (np.array([0.0, 0.0]), 0.0), | ||
... ] | ||
>>> selected_parents = ga.select_parents(population_score) | ||
>>> len(selected_parents) | ||
2 # Should select the two parents with the best fitness scores. | ||
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0])) | ||
# Parent 1 should be [1.0, 2.0] | ||
True | ||
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0])) | ||
# Parent 2 should be [-1.0, -2.0] | ||
True | ||
""" | ||
|
||
if not population_score: | ||
raise ValueError("Population score is empty, cannot select parents.") | ||
|
||
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True) | ||
selected_count = min(N_SELECTED, len(population_score)) | ||
return [ind for ind, _ in population_score[:selected_count]] | ||
|
||
def crossover( | ||
self, parent1: np.ndarray, parent2: np.ndarray | ||
) -> tuple[np.ndarray, np.ndarray]: | ||
""" | ||
Perform uniform crossover between two parents to generate offspring. | ||
|
||
Args: | ||
parent1 (np.ndarray): The first parent. | ||
parent2 (np.ndarray): The second parent. | ||
Returns: | ||
tuple[np.ndarray, np.ndarray]: The two offspring generated by crossover. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... lambda x, y: -(x**2 + y**2), | ||
... [(-10, 10), (-10, 10)], | ||
... 10, 100, 0.1, 0.8, True | ||
... ) | ||
>>> parent1, parent2 = np.array([1, 2]), np.array([3, 4]) | ||
>>> len(ga.crossover(parent1, parent2)) == 2 | ||
True | ||
""" | ||
if random.random() < self.crossover_rate: | ||
cross_point = random.randint(1, self.dim - 1) | ||
child1 = np.concatenate((parent1[:cross_point], parent2[cross_point:])) | ||
child2 = np.concatenate((parent2[:cross_point], parent1[cross_point:])) | ||
return child1, child2 | ||
return parent1, parent2 | ||
|
||
def mutate(self, individual: np.ndarray) -> np.ndarray: | ||
""" | ||
Apply mutation to an individual. | ||
|
||
Args: | ||
individual (np.ndarray): The individual to mutate. | ||
|
||
Returns: | ||
np.ndarray: The mutated individual. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... lambda x, y: -(x**2 + y**2), | ||
... [(-10, 10), (-10, 10)], | ||
... 10, 100, 0.1, 0.8, True | ||
... ) | ||
>>> ind = np.array([1.0, 2.0]) | ||
>>> mutated = ga.mutate(ind) | ||
>>> len(mutated) == 2 # Ensure it still has the correct number of dimensions | ||
True | ||
""" | ||
for i in range(self.dim): | ||
if random.random() < self.mutation_prob: | ||
individual[i] = rng.uniform(self.bounds[i][0], self.bounds[i][1]) | ||
return individual | ||
|
||
def evaluate_population(self) -> list[tuple[np.ndarray, float]]: | ||
""" | ||
Evaluate the fitness of the entire population in parallel. | ||
|
||
Returns: | ||
list[tuple[np.ndarray, float]]: | ||
The population with their respective fitness values. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... lambda x, y: -(x**2 + y**2), | ||
... [(-10, 10), (-10, 10)], | ||
... 10, 100, 0.1, 0.8, True | ||
... ) | ||
>>> eval_population = ga.evaluate_population() | ||
>>> len(eval_population) == ga.population_size # Ensure population size | ||
True | ||
>>> all( | ||
... isinstance(ind, tuple) and isinstance(ind[1], float) | ||
... for ind in eval_population | ||
... ) | ||
True | ||
""" | ||
with ThreadPoolExecutor() as executor: | ||
return list( | ||
executor.map( | ||
lambda individual: (individual, self.fitness(individual)), | ||
self.population, | ||
) | ||
) | ||
|
||
def evolve(self, verbose: bool = True) -> np.ndarray: | ||
""" | ||
Evolve the population over the generations to find the best solution. | ||
|
||
Args: | ||
verbose (bool): If True, prints the progress of the generations. | ||
|
||
Returns: | ||
np.ndarray: The best individual found during the evolution process. | ||
|
||
Example: | ||
>>> ga = GeneticAlgorithm( | ||
... function=lambda x, y: x**2 + y**2, | ||
... bounds=[(-10, 10), (-10, 10)], | ||
... population_size=10, | ||
... generations=10, | ||
... mutation_prob=0.1, | ||
... crossover_rate=0.8, | ||
... maximize=False | ||
... ) | ||
>>> best_solution = ga.evolve(verbose=False) | ||
>>> len(best_solution) | ||
2 # The best solution should be a 2-element array (var_x, var_y) | ||
>>> isinstance(best_solution[0], float) # First element should be a float | ||
True | ||
>>> isinstance(best_solution[1], float) # Second element should be a float | ||
True | ||
""" | ||
best_individual = None | ||
for generation in range(self.generations): | ||
# Evaluate population fitness (multithreaded) | ||
population_score = self.evaluate_population() | ||
|
||
# Ensure population_score isn't empty | ||
if not population_score: | ||
raise ValueError("Population score is empty. No individuals evaluated.") | ||
|
||
# Check the best individual | ||
best_individual = max( | ||
population_score, key=lambda score_tuple: score_tuple[1] | ||
)[0] | ||
best_fitness = self.fitness(best_individual) | ||
|
||
# Select parents for next generation | ||
parents = self.select_parents(population_score) | ||
next_generation = [] | ||
|
||
# Generate offspring using crossover and mutation | ||
for i in range(0, len(parents), 2): | ||
parent1, parent2 = ( | ||
parents[i], | ||
parents[(i + 1) % len(parents)], | ||
) # Wrap around for odd cases | ||
child1, child2 = self.crossover(parent1, parent2) | ||
next_generation.append(self.mutate(child1)) | ||
next_generation.append(self.mutate(child2)) | ||
|
||
# Ensure population size remains the same | ||
self.population = next_generation[: self.population_size] | ||
|
||
if verbose and generation % 10 == 0: | ||
print(f"Generation {generation}: Best Fitness = {best_fitness}") | ||
|
||
return best_individual | ||
|
||
|
||
# Example target function for optimization | ||
def target_function(var_x: float, var_y: float) -> float: | ||
""" | ||
Example target function (parabola) for optimization. | ||
Args: | ||
var_x (float): The x-coordinate. | ||
var_y (float): The y-coordinate. | ||
Returns: | ||
float: The value of the function at (var_x, var_y). | ||
|
||
Example: | ||
>>> target_function(0, 0) | ||
0 | ||
>>> target_function(1, 1) | ||
2 | ||
""" | ||
return var_x**2 + var_y**2 # Simple parabolic surface (minimization) | ||
|
||
|
||
# Set bounds for the variables (var_x, var_y) | ||
bounds = [(-10, 10), (-10, 10)] # Both var_x and var_y range from -10 to 10 | ||
|
||
# Instantiate and run the genetic algorithm | ||
ga = GeneticAlgorithm( | ||
function=target_function, | ||
bounds=bounds, | ||
population_size=N_POPULATION, | ||
generations=N_GENERATIONS, | ||
mutation_prob=MUTATION_PROBABILITY, | ||
crossover_rate=CROSSOVER_RATE, | ||
maximize=False, # Minimize the function | ||
) | ||
|
||
best_solution = ga.evolve() | ||
print(f"Best solution found: {best_solution}") | ||
print(f"Best fitness (minimum value of function): {target_function(*best_solution)}") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
As there is no test file in this pull request nor any test function or class in the file
genetic_algorithm/genetic_algorithm_optimization.py
, please provide doctest for the functioninitialize_population