-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
transformed the python into generator ms
- Loading branch information
1 parent
c490829
commit ec348e3
Showing
36 changed files
with
206,438 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +0,0 @@ | ||
# generator-ms | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
column,validations | ||
school_id,"1000000000,9999999999" | ||
cluster_id,"100000000,999999999" | ||
block_id,"10000,99999" | ||
district_id,"100,999" | ||
state_id,"1,99" | ||
month,"1,12" |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
program,dimension_name,dimension_col,dimension_datatype,target_table | ||
SAC,school_details,"grade,school_id,school_name,school_type,school_category,cluster_id,cluster_name,block_id,block_name,district_id,district_name,state_id,state_name","number,number,string,string,string,number,string,number,string,number,string,number,string", ingestion.school_details | ||
School_Statistics,school_details,"grade,school_id,school_name,school_type,school_category,cluster_id,cluster_name,block_id,block_name,district_id,district_name,state_id,state_name","number,number,string,string,string,number,string,number,string,number,string,number,string", ingestion.school_details |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
program,event_name,event_col,event_datatype | ||
SAC,students_attendance,"date,school_id,grade,gender,total_students,students_attendance_marked,students_marked_present","string,number,number,string,number,number,number" | ||
SAC,teachers_attendance,"date,school_id,grade,total_teachers,teachers_attendance_marked,teachers_marked_present","string,number,number,number,number,number" | ||
School_Statistics,school_statistics_students,"academic_year,school_id,grade,gender,student_category,students_enrolled,cwsn_enrolled","number,number,number,string,string,number,number" | ||
School_Statistics,school_statistics_teachers,"academic_year,school_id,grade,total_teachers,students_enrolled","number,number,number,number,number,number" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import json | ||
from flask import Flask,request,Response | ||
from spec_key_mapping import EventSpec,DimensionSpec,DatasetSpec | ||
app = Flask(__name__) | ||
|
||
|
||
@app.route('/generator/spec',methods=['POST']) | ||
def SpecGenerator(): | ||
spec_type=request.json['spec_type'] | ||
try: | ||
if(spec_type=='EventSpec'): | ||
return EventSpec(request,Response) | ||
|
||
elif(spec_type=='DimensionSpec'): | ||
return DimensionSpec(request,Response) | ||
|
||
elif (spec_type == 'DatasetSpec'): | ||
return DatasetSpec(request,Response) | ||
else: | ||
return Response(json.dumps({"Message": "Spec Type is not correct"})) | ||
except Exception as error: | ||
print(error) | ||
return Response(json.dumps({"Message": "Given Input Is Not Correct"})) | ||
|
||
|
||
if (__name__ == "__main__"): | ||
app.run(debug=True,port=3002) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
import json | ||
import os | ||
import re | ||
from datetime import date | ||
|
||
import pandas as pd | ||
todays_date = date.today() | ||
CeatedSpecList=[] | ||
def KeysMaping(Program, InputKeys, template, SpecFile, Response): | ||
template = template + '.json' | ||
SpecFile = SpecFile + '.json' | ||
Program = Program + 'Specs' | ||
if not os.path.exists(Program): | ||
os.makedirs(Program) | ||
if os.path.exists(os.path.dirname(os.path.abspath(__file__)) + '/' + Program + '/' + SpecFile): | ||
os.remove(os.path.dirname(os.path.abspath(__file__)) + '/' + Program + '/' + SpecFile) | ||
with open(os.path.dirname(os.path.abspath(__file__)) + '/template/' + template, 'r') as fs: | ||
valueOfTemplate = fs.readlines() | ||
if (len(InputKeys) != 0): | ||
for valueOfTemplate in valueOfTemplate: | ||
ToreplaceString = valueOfTemplate | ||
templateKeys = re.findall("(?<=<)(.*?)(?=>)", ToreplaceString) | ||
for key in templateKeys: | ||
replaceStr = '<' + key + '>' | ||
ToreplaceString = ToreplaceString.replace(replaceStr, str(InputKeys[key])) | ||
with open(os.path.dirname(os.path.abspath(__file__)) + '/' + Program + '/' + SpecFile, 'a') as fs: | ||
fs.write(ToreplaceString) | ||
CeatedSpecList.append({"filename": SpecFile}) | ||
return Response(json.dumps({"Message": "Spec created successfully", "SpecFiles":CeatedSpecList, "code": 200})) | ||
else: | ||
print('ERROR : InputKey is empty') | ||
return Response(json.dumps({"Message": "InputKey is empty"})) | ||
|
||
|
||
InputKeys = {} | ||
|
||
|
||
def EventSpec(request, Response): | ||
Template = "Event" | ||
Program = request.json['program'] | ||
EventKeys = request.json['key_file'] | ||
ValidationKeys = request.json['validation_keys'] | ||
Path = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + ValidationKeys | ||
########## Reading additional validation csv file ########### | ||
df_validation = pd.read_csv(Path) | ||
if len(df_validation) == 0: | ||
return Response(json.dumps({"Message": ValidationKeys + " is empty"})) | ||
Validation_items = df_validation.values.tolist() | ||
Validationcol_list = [] | ||
validation_list = [] | ||
try: | ||
for item in Validation_items: | ||
Validationcol_list.append(item[0]) | ||
validation_list.append(item[1]) | ||
validation_dict = (dict(zip(Validationcol_list, validation_list))) | ||
|
||
########## Reading Eventtkeys csv file ################# | ||
EventPath = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + EventKeys | ||
df_event = pd.read_csv(EventPath) | ||
if len(df_event) == 0: | ||
return Response(json.dumps({"Message": EventKeys + " is empty"})) | ||
df_event = df_event.loc[df_event['program'] == Program] | ||
E_keys = df_event.keys().tolist() | ||
event_items = df_event.values.tolist() | ||
for value in event_items: | ||
event = (dict(zip(E_keys, value))) | ||
EventName = event['event_name'] | ||
EventColumn = [x.strip() for x in event['event_col'].split(',')] | ||
DataTypes = [x.strip() for x in event['event_datatype'].split(',')] | ||
EventDict = dict(zip(EventColumn, DataTypes)) | ||
ColumnsDataType = [] | ||
for event_col in EventColumn: | ||
if event_col.casefold() == 'date': | ||
ColumnsDataType.append({"type": "string", "shouldnotnull": True, "format": "date"}) | ||
elif (event_col.casefold() == 'grade') | (event_col.casefold() == 'class'): | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum": 1, "maximum": 12}) | ||
elif event_col.casefold() in ['year','academic_year']: | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum":((todays_date.year)-5), "maximum":int(todays_date.year)}) | ||
elif event_col in Validationcol_list: | ||
min = int(str(validation_dict[event_col]).split(',')[0]) | ||
max = int(str(validation_dict[event_col]).split(',')[1]) | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum": min, "maximum": max}) | ||
else: | ||
ColumnsDataType.append({"type": EventDict[event_col].strip(), "shouldnotnull": True}) | ||
InputKeys.update({"EventName": json.dumps(EventName), | ||
"EventObject": json.dumps(dict(zip(EventColumn, ColumnsDataType))), | ||
"EventList": json.dumps(EventColumn)}) | ||
KeysMaping(Program, InputKeys, Template, 'event_' + EventName, Response) | ||
except Exception as error: | ||
print(error) | ||
return KeysMaping(Program, InputKeys, Template, 'event_' + EventName, Response) | ||
|
||
|
||
|
||
def DimensionSpec(request, Response): | ||
Template = "Dimension" | ||
Program = request.json['program'] | ||
DimensionKeys = request.json['key_file'] | ||
ValidationKeys = request.json['validation_keys'] | ||
Path = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + ValidationKeys | ||
|
||
########## Reading additional validation csv file ########### | ||
df_validation = pd.read_csv(Path) | ||
if len(df_validation) == 0: | ||
return Response(json.dumps({"Message": ValidationKeys + " is empty"})) | ||
Validation_items = df_validation.values.tolist() | ||
Validationcol_list = [] | ||
validation_list = [] | ||
for item in Validation_items: | ||
Validationcol_list.append(item[0]) | ||
validation_list.append(item[1]) | ||
validation_dict = (dict(zip(Validationcol_list, validation_list))) | ||
|
||
########## Reading DimensionKey csv file ################# | ||
DimensionPath = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + DimensionKeys | ||
df_dimension = pd.read_csv(DimensionPath) | ||
if len(df_dimension) == 0: | ||
return Response(json.dumps({"Message": DimensionKeys + " is empty"})) | ||
df_dimension = df_dimension.loc[df_dimension['program'] == Program] | ||
Dim_keys = df_dimension.keys().tolist() | ||
Dim_items = df_dimension.values.tolist() | ||
for value in Dim_items: | ||
event = (dict(zip(Dim_keys, value))) | ||
DimensionName = event['dimension_name'] | ||
DimensionColumn = [x.strip() for x in event['dimension_col'].split(',')] | ||
DataTypes = [x.strip() for x in event['dimension_datatype'].split(',')] | ||
TargetTable=[x.strip() for x in event['target_table'].split(',')] | ||
print(TargetTable) | ||
DimensionDict = dict(zip(DimensionColumn, DataTypes)) | ||
ColumnsDataType = [] | ||
for dimension_col in DimensionColumn: | ||
if (dimension_col.casefold() == 'grade') | (dimension_col.casefold() == 'class'): | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum": 1, "maximum": 12}) | ||
elif dimension_col in Validationcol_list: | ||
min = int(str(validation_dict[dimension_col]).split(',')[0]) | ||
max = int(str(validation_dict[dimension_col]).split(',')[1]) | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum": min, "maximum": max}) | ||
else: | ||
ColumnsDataType.append({"type": DimensionDict[dimension_col].strip(), "shouldnotnull": True}) | ||
InputKeys.update({"DimensionName": json.dumps(DimensionName), | ||
"DimensionObject": json.dumps(dict(zip(DimensionColumn, ColumnsDataType))), | ||
"DimensionList": json.dumps(DimensionColumn), | ||
"TargetTable":json.dumps(dict(zip(TargetTable, [{"type": "string","shouldnotnull": True}])))}) | ||
return KeysMaping(Program, InputKeys, Template, 'dimension_' + DimensionName, Response) | ||
|
||
|
||
def DatasetSpec(request, Response): | ||
DatasetKeys = request.json['key_file'] | ||
Program = request.json['program'] | ||
ValidationKeys = request.json['validation_keys'] | ||
Path = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + ValidationKeys | ||
########## Reading additional validation csv file ########### | ||
df_validation = pd.read_csv(Path) | ||
if len(df_validation) == 0: | ||
return Response(json.dumps({"Message": ValidationKeys + " is empty"})) | ||
Validation_items = df_validation.values.tolist() | ||
Validationcol_list = [] | ||
validation_list = [] | ||
for item in Validation_items: | ||
Validationcol_list.append(item[0]) | ||
validation_list.append(item[1]) | ||
validation_dict = (dict(zip(Validationcol_list, validation_list))) | ||
|
||
########## Reading Datasetkeys csv file ################# | ||
DatasetPath = os.path.dirname(os.path.abspath(__file__)) + "/key_files/" + DatasetKeys | ||
df_dataset = pd.read_csv(DatasetPath) | ||
if len(df_dataset) == 0: | ||
return Response(json.dumps({"Message": DatasetKeys + " is empty"})) | ||
df_dataset = df_dataset.loc[df_dataset['program'] == Program] | ||
D_keys = df_dataset.keys().tolist() | ||
Dataset_items = df_dataset.values.tolist() | ||
try: | ||
for value in Dataset_items: | ||
dataset = (dict(zip(D_keys, value))) | ||
DatasetName = dataset['dataset_name'] | ||
Template = dataset['template'] | ||
if dataset['template'] in ['CubeToCube', 'CubeToCubeIncrement', 'CubeToCubePer', 'CubeToCubePerIncrement', | ||
'E&CToCubePer', 'E&CToCubePerIncrement']: | ||
Template = 'CubeToCube' | ||
elif dataset['template'] in ['EventToCube', 'EventToCubeIncrement', 'EventToCubePer', | ||
'EventToCubePerIncrement']: | ||
Template = 'EventToCube' | ||
elif dataset['template'] in ['CubeToCubePerFilter', 'CubeToCubePerFilterIncrement', 'CubeToCubeFilter', | ||
'CubeToCubeFilterIncrement']: | ||
Template = 'CubeToCubeFilter' | ||
else: | ||
return Response(json.dumps({"Message": "Template name is not correct", "Template": Template, "Dataset": DatasetName})) | ||
DimensionCol = [x.strip() for x in dataset['dimension_col'].split(',')] | ||
DimensionTable = [x.strip() for x in dataset['dimension_table'].split(',')] | ||
MergeOnCol = [x.strip() for x in dataset['merge_on_col'].split(',')] | ||
DatasetColumn = [x.strip() for x in dataset['dataset_col'].split(',')] | ||
DataTypes = [x.strip() for x in dataset['dataset_datatype'].split(',')] | ||
DatasetDict = dict(zip(DatasetColumn, DataTypes)) | ||
GroupByCol = [x.strip() for x in dataset['group_by_col'].split(',')] | ||
AggFunction = [x.strip() for x in dataset['agg_function'].split(',')] | ||
TargetTable = [x.strip() for x in dataset['target_table'].split(',')] | ||
UpdateCol = [x.strip() for x in dataset['update_col'].split(',')] | ||
AggCol = [x.strip() for x in dataset['agg_col'].split(',')] | ||
AggColTable = [x.strip() for x in dataset['agg_col_table'].split(',')] | ||
FilterCol = [x.strip() for x in str(dataset['filter_col']).split(',')] | ||
FilterType = [x.strip() for x in str(dataset['filter_type']).strip('{}').split(',')] | ||
Filter = [x.strip() for x in str(dataset['filter']).split(',')] | ||
Numerator=[x.strip() for x in str(dataset['numerator']).split(',')] | ||
Denominator=[x.strip() for x in str(dataset['denominator']).split(',')] | ||
ColumnsDataType = [] | ||
for datasetcol in DatasetColumn: | ||
if datasetcol.casefold() == 'date': | ||
ColumnsDataType.append({"type": "string", "shouldnotnull": True, "format": "date"}) | ||
elif (datasetcol.casefold() == 'grade') | (datasetcol.casefold() == 'class'): | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True, "minimum": 1, "maximum": 12}) | ||
elif datasetcol in Validationcol_list: | ||
min = int(str(validation_dict[datasetcol]).split(',')[0]) | ||
max =int(str(validation_dict[datasetcol]).split(',')[1]) | ||
ColumnsDataType.append({"type": "number", "shouldnotnull": True,"minimum":min,"maximum":max}) | ||
else: | ||
ColumnsDataType.append({"type": DatasetDict[datasetcol].strip(), "shouldnotnull": True}) | ||
InputKeys.update( | ||
{"DatasetName": DatasetName, "DimensionTable": json.dumps(dict(zip(DimensionTable, [{"type": "string"}]))), | ||
"DimensionCol": json.dumps(dict(zip(DimensionCol, ([{"type": "string"}]) * len(DimensionCol)))), | ||
"MergeOnCol": json.dumps(dict(zip(MergeOnCol, [{"type": "string"}]))), | ||
"DatasetObject": json.dumps(dict(zip(DatasetColumn, ColumnsDataType))), | ||
"DatasetList": json.dumps(DatasetColumn), "GroupByList": json.dumps(GroupByCol), | ||
"GroupByObject": json.dumps(dict(zip(GroupByCol, ([{"type": "string"}]) * len(GroupByCol)))), | ||
"AggFunction": json.dumps(dict(zip(AggFunction, ([{"type": "string"}]) * len(AggFunction)))), | ||
"AggCol": json.dumps(dict(zip(AggCol, ([{"type": "string"}]) * len(AggCol)))), | ||
"TargetTable": json.dumps(dict(zip(TargetTable, [{"type": "string"}]))), | ||
"UpdateCol": json.dumps(dict(zip(UpdateCol, ([{"type": "number"}]) * len(UpdateCol)))), | ||
"NumeratorCol":json.dumps(dict(zip(Numerator,([{"type":"number"}])))), | ||
"DenominatorCol":json.dumps(dict(zip(Denominator,([{"type":"number"}]))))}) | ||
if Template == "EventToCube": | ||
InputKeys.update(InputKeys) | ||
elif Template == "CubeToCube": | ||
InputKeys.update({"AggColTable": json.dumps(dict(zip(AggColTable, [{"type": "string"}])))}) | ||
elif Template == "CubeToCubeFilter": | ||
InputKeys.update({"AggColTable": json.dumps(dict(zip(AggColTable, [{"type": "string"}]))), | ||
"FilterCol": json.dumps(dict(zip(FilterCol, [{"type": "string"}]))), | ||
"FilterType": json.dumps(dict(zip(FilterType, [{"type": "string"}]))), | ||
"Filter": json.dumps(dict(zip(Filter, [{"type": "string"}])))}) | ||
else: | ||
print("ERROR: Template name is not correct") | ||
return Response(json.dumps({"Message": "Template name is not correct", "Template": Template})) | ||
KeysMaping(Program, InputKeys, Template, DatasetName, Response) | ||
except Exception as error: | ||
print(error) | ||
return KeysMaping(Program, InputKeys, Template, DatasetName, Response) |
Oops, something went wrong.