Skip to content

Commit

Permalink
Merge pull request #233 from Sunbird-cQube/dev
Browse files Browse the repository at this point in the history
merge dev to staging
  • Loading branch information
htvenkatesh authored Jul 10, 2023
2 parents 35ec8f8 + 9990b3e commit 9075cce
Show file tree
Hide file tree
Showing 15 changed files with 80 additions and 202 deletions.
17 changes: 17 additions & 0 deletions adapter/NVSK/DIKSHA_content_coverage_on_qr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from main import CollectData

obj=CollectData()
program=obj.program
df_data=obj.get_file()

def qr_coverage():
df_snap = df_data[['state_code', 'qr_coverage']]
df_snap.columns = ['state_id', 'content_coverage_on_qr']
obj.upload_file(df_snap, 'contentcoverage-event.data.csv')


if df_data is not None:
qr_coverage()



43 changes: 0 additions & 43 deletions adapter/NVSK/DIKSHA_etb_coverage_state_wise.py

This file was deleted.

27 changes: 19 additions & 8 deletions adapter/NVSK/DIKSHA_etb_coverage_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,25 @@
program=obj.program
df_data=obj.get_file()

def linked_qr_count():
df_snap = df_data[['textbook_id','grade','subject','medium','linked_qr_count']]
obj.upload_file(df_snap,'linkedqrcount-event.data.csv')

def resource_count():
df_snap = df_data[['textbook_id','grade','subject','medium','resource_count']]
obj.upload_file(df_snap, 'resourcecount-event.data.csv')

def total_energised_tb():
df_snap = df_data[['state_code','total_energised']]
df_snap.columns = ['state_id','total_energized_textbooks']
obj.upload_file(df_snap, 'totalenergizedtb-event.data.csv')

def total_curriculum_textbooks():
df_snap = df_data[['state_code','total_physical_textbooks_excluding_adopted']]
df_snap.columns = ['state_id','total_curriculum_textbooks']
obj.upload_file(df_snap, 'totalcurriculumtb-event.data.csv')

def perc_etb_coverage():
df_snap = df_data[['state_code','etb_coverage_%']]
df_snap.columns = ['state_id','perc_energized_textbooks']
obj.upload_file(df_snap, 'percenergizedtb-event.data.csv')


if df_data is not None:
linked_qr_count()
resource_count()
total_energised_tb()
total_curriculum_textbooks()
perc_etb_coverage()
29 changes: 0 additions & 29 deletions adapter/NVSK/DIKSHA_etb_qr_coverage.py

This file was deleted.

27 changes: 0 additions & 27 deletions adapter/NVSK/DIKSHA_etb_qr_coverage_state.py

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,8 @@

def energised_textbooks():
df_snap = df_data[['state_code','energised_textbooks']]
df_snap.columns = ['state_id','energised_textbooks']
obj.upload_file(df_snap, 'energisedtextbooks-event.data.csv')
df_snap.columns = ['state_id','energized_textbooks']
obj.upload_file(df_snap, 'energizedtextbooks-event.data.csv')

if df_data is not None:
energised_textbooks()
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,8 @@

def plays_per_capita():
df_snap = df_data[['state_code','plays_per_capita']]
df_snap.columns = ['state_id','plays_per_capita']
obj.upload_file(df_snap, 'playspercapita-event.data.csv')
df_snap.columns = ['state_id','learning_session_on_potential_user']
obj.upload_file(df_snap, 'potentialuser-event.data.csv')

if df_data is not None:
plays_per_capita()
6 changes: 3 additions & 3 deletions adapter/NVSK/MICRO_Improvement_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,13 @@
df_data=obj.get_file()

def category_event_data():
df_melt = df_data.melt(id_vars=['district_code'],
df_melt = df_data.melt(id_vars=['state_code'],
value_vars=["total_micro_improvement_projects","total_micro_improvement_started",
"total_micro_improvement_inprogress","total_micro_improvement_submitted",
"total_micro_improvement_submitted_with_evidence"],
var_name="category_name", value_name="category_value")
df_snap = df_melt[['district_code','category_name', 'category_value']]
df_snap.columns = ['district_id','category_name', 'category_value']
df_snap = df_melt[['state_code','category_name', 'category_value']]
df_snap.columns = ['state_id','category_name', 'category_value']
df_snap.update(df_snap[['category_name']].applymap("'{}'".format))
return df_snap

Expand Down
5 changes: 0 additions & 5 deletions adapter/NVSK/NISHTHA_course_wise_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,10 +9,6 @@ def totalenrolment_event_data():
df_snap.columns = ['state_id','program_name','course_name','total_enrolment']
obj.upload_file(df_snap, 'courseenrolment-event.data.csv')

def totalcompletion_event_data():
df_snap = df_data[['state_code','program','course_name','completion']]
df_snap.columns = [ 'state_id','program_name','course_name','total_completion']
obj.upload_file(df_snap, 'coursecompletion-event.data.csv')

def totalcertification_event_data():
df_snap = df_data[['state_code','program','course_name', 'certification']]
Expand All @@ -30,6 +26,5 @@ def course_dimension():

if df_data is not None:
totalenrolment_event_data()
totalcompletion_event_data()
totalcertification_event_data()
course_dimension()
4 changes: 2 additions & 2 deletions adapter/NVSK/NISHTHA_courses_medium_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@ def totalmedium_event_data():

def totalcourses_event_data():
df_snap = df_data[['state_code','program_name','total_courses']]
df_snap.columns = ['state_id','program_name','total_courses']
obj.upload_file(df_snap, 'mediumtotalcourses-event.data.csv')
df_snap.columns = ['state_id','program_name','total_courses_launched']
obj.upload_file(df_snap, 'totalcourseslaunched-event.data.csv')

if df_data is not None:
totalmedium_event_data()
Expand Down
20 changes: 4 additions & 16 deletions adapter/NVSK/NISHTHA_district_wise_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,23 +6,13 @@

def totalenrolment_event_data():
df_snap = df_data[['state_code','district_code','program', 'total_enrollments']]
df_snap.columns = ['state_id','district_id','program_name', 'total_enrolment']
obj.upload_file(df_snap, 'consumptionenrolment-event.data.csv')

def totalcompletion_event_data():
df_snap = df_data[['state_code','district_code','program', 'total_completion']]
df_snap.columns = ['state_id','district_id','program_name', 'total_completion']
obj.upload_file(df_snap, 'consumptioncompletion-event.data.csv')
df_snap.columns = ['state_id','district_id','program_name', 'total_enrolments']
obj.upload_file(df_snap, 'districtwiseenrolments-event.data.csv')

def totalcertification_event_data():
df_snap = df_data[['state_code', 'district_code', 'program', 'total_certifications']]
df_snap.columns = ['state_id', 'district_id', 'program_name', 'total_certification']
obj.upload_file(df_snap, 'consumptioncertification-event.data.csv')

def perccertification_event_data():
df_snap = df_data[['state_code', 'district_code', 'program', 'certification%']]
df_snap.columns = ['state_id', 'district_id', 'program_name', 'perc_certification']
obj.upload_file(df_snap, 'consumptionperccertification-event.data.csv')
df_snap.columns = ['state_id', 'district_id', 'program_name', 'total_certifications']
obj.upload_file(df_snap, 'districtwisecertifications-event.data.csv')

def program_dimension_data():
df_snap = df_data[['program']].drop_duplicates()
Expand All @@ -35,7 +25,5 @@ def program_dimension_data():

if df_data is not None:
totalenrolment_event_data()
totalcompletion_event_data()
totalcertification_event_data()
perccertification_event_data()
program_dimension_data()
69 changes: 17 additions & 52 deletions adapter/NVSK/NISHTHA_percentage_against_potential_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,78 +4,43 @@
program=obj.program
df_data=obj.get_file()

def total_enrolment():
def actual_enrolment():
df_snap = df_data[['state_code','program','total_enrolments']]
df_snap.columns = ['state_id','program_name','total_enrolment']
obj.upload_file(df_snap, 'totalenrolment-event.data.csv')
df_snap.columns = ['state_id','program_name','actual_enrolment']
obj.upload_file(df_snap, 'actualenrolment-event.data.csv')

def total_completion():
df_snap = df_data[['state_code','program','total_completions']]
df_snap.columns = ['state_id','program_name','total_completion']
obj.upload_file(df_snap, 'totalcompletion-event.data.csv')

def total_certificates_issued():
def actual_certification():
df_snap = df_data[['state_code', 'program','total_certificates_issued']]
df_snap.columns = ['state_id','program_name','total_certificates_issued']
obj.upload_file(df_snap, 'totalcertificatesissued-event.data.csv')

def total_courses():
df_snap = df_data[['state_code','program', 'total_courses']]
df_snap.columns = ['state_id','program_name', 'total_courses']
obj.upload_file(df_snap, 'totalcourses-event.data.csv')

def doe_event_data():
df_snap = df_data[['state_code','program', 'doe']]
df_snap.columns = ['state_id','program_name','doe']
obj.upload_file(df_snap, 'doe-event.data.csv')
df_snap.columns = ['state_id','program_name','actual_certification']
obj.upload_file(df_snap, 'actualcertification-event.data.csv')

def localbody_event_data():
df_snap = df_data[['state_code', 'program','local_body']]
df_snap.columns = ['state_id','program_name', 'local_body']
obj.upload_file(df_snap, 'localbody-event.data.csv')

def target_achieved_enrolment():
df_snap = df_data[['state_code','program','%_target_achieved_enrolment']]
df_snap.columns = ['state_id','program_name','perc_target_achieved_enrolment']
obj.upload_file(df_snap, 'achievedenrolment-event.data.csv')
obj.upload_file(df_snap, 'targetachievedenrolment-event.data.csv')

def target_achieved_certificates():
df_snap = df_data[['state_code', 'program','%_target_achieved_certificates']]
df_snap.columns = ['state_id','program_name', 'perc_target_achieved_certificates']
obj.upload_file(df_snap, 'achievedcertificates-event.data.csv')

def target_remaining_enrolment():
df_snap = df_data[['state_code', 'program','%_target_remaining_enrolment']]
df_snap.columns = ['state_id', 'program_name','perc_target_remaining_enrolment']
obj.upload_file(df_snap, 'targetremainingenrolment-event.data.csv')

def target_remaining_certificates():
df_snap = df_data[['state_code','program','%_target_remaining_certificates']]
df_snap.columns = [ 'state_id','program_name','perc_target_remaining_certificates']
obj.upload_file(df_snap, 'targetremainingcertificates-event.data.csv')
obj.upload_file(df_snap, 'targetachievedcertificates-event.data.csv')

def total_expected_enrolment():
def expected_enrolment():
df_snap = df_data[['state_code','program','total_expected_enrolment']]
df_snap.columns = ['state_id','program_name','total_expected_enrolment']
df_snap.columns = ['state_id','program_name','expected_enrolment']
obj.upload_file(df_snap, 'expectedenrolment-event.data.csv')

def total_expected_certification():
def expected_certification():
df_snap = df_data[['state_code', 'program','total_expected_certification']]
df_snap.columns = ['state_id','program_name','total_expected_certification']
obj.upload_file(df_snap, 'expectedcertification-event.data.csv')
df_snap.columns = ['state_id','program_name','total_expected_certificates']
obj.upload_file(df_snap, 'expectedcertificates-event.data.csv')

if df_data is not None:
total_enrolment()
total_completion()
total_certificates_issued()
total_courses()
doe_event_data()
localbody_event_data()
actual_certification()
actual_enrolment()
target_achieved_enrolment()
target_achieved_certificates()
target_remaining_enrolment()
target_remaining_certificates()
total_expected_enrolment()
total_expected_certification()
expected_enrolment()
expected_certification()


11 changes: 4 additions & 7 deletions adapter/NVSK/NVSK_data_transformation.sh
Original file line number Diff line number Diff line change
@@ -1,11 +1,8 @@
python3 DIKSHA_etb_coverage_state_wise.py diksha diksha_etb_etb-coverage.csv
python3 DIKSHA_etb_coverage_status.py diksha diksha_etb_coverage-status.csv
python3 DIKSHA_etb_plays_per_capita.py diksha diksha_etb_plays-per-capita.csv
python3 DIKSHA_content_coverage_on_qr.py diksha diksha_etb_qr-coverage.csv
python3 DIKSHA_etb_coverage_status.py diksha diksha_etb_etb-coverage.csv
python3 DIKSHA_etb_learning_session.py diksha diksha_etb_learning-session.csv
python3 DIKSHA_etb_program_started.py diksha diksha_etb_program-started.csv
python3 DIKSHA_etb_qr_coverage.py diksha vsk_diksha_etb_qr-coverage.csv
python3 DIKSHA_etb_qr_coverage_state.py diksha diksha_etb_qr-coverage.csv

python3 DIKSHA_implementation_status.py diksha diksha_etb_program-started.csv
python3 DIKSHA_learning_session_potential_user.py diksha diksha_etb_plays-per-capita.csv

python3 MICRO_Implementation_status.py micro-improvements micro-improvement_all-dashboard.csv
python3 MICRO_Improvement_status.py micro-improvements micro-improvement_district.csv
Expand Down
10 changes: 5 additions & 5 deletions adapter/NVSK/PM_Poshan_progress_status.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,16 +5,16 @@
df_data = obj.get_file()

def total_meal_served():
df_snap = df_data[['district_code', 'meal_served']]
df_snap.columns = ['district_id', 'total_meals_served']
df_snap = df_data[['state_code','district_code', 'meal_served']]
df_snap.columns = ['state_id','district_id', 'total_meals_served']
obj.upload_file(df_snap, 'mealserved-event.data.csv')

def category_event_data():
df_melt=df_data.melt(id_vars=['district_code'],
df_melt=df_data.melt(id_vars=['state_code','district_code'],
value_vars=['enrolled','total_schools'],
var_name="category_name",value_name="category_value")
df_snap=df_melt[['district_code','category_name','category_value']]
df_snap.columns=['district_id','category_name','category_value']
df_snap=df_melt[['state_code','district_code','category_name','category_value']]
df_snap.columns=['state_id','district_id','category_name','category_value']
df_snap.update(df_snap[['category_name']].applymap("'{}'".format))
return df_snap

Expand Down
Loading

0 comments on commit 9075cce

Please sign in to comment.