Skip to content

Commit

Permalink
Merge pull request #2 from SonyResearch/hojoonlee/update_project_page
Browse files Browse the repository at this point in the history
Hojoonlee/update project page
  • Loading branch information
takuma-sony authored Oct 15, 2024
2 parents be01681 + b0b8a18 commit a25db74
Show file tree
Hide file tree
Showing 4 changed files with 55 additions and 12 deletions.
44 changes: 40 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,41 @@
# SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning
# SimBa: Simplicity Bias for Scaling Up Parameters in Deep RL

This is a repository of an official implementation of Simba: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning.
This is a repository of an official implementation of

<i>Simba: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning </i> by

<a href="https://joonleesky.github.io">Hojoon Lee</a>,
<a href="https://godnpeter.github.io">Dongyoon Hwang</a>,
<a href="https://i-am-proto.github.io">Donghu Kim</a>,
<a href="https://mynsng.github.io">Hyunseung Kim</a>,
<a href="https://taijunjet.com">Jun Jet Tai</a>,
<a href="https://kausubbu.github.io">Kaushik Subramanian</a>,

<a href="https://www.pwurman.org">Peter R. Wurman</a>,
<a href="https://sites.google.com/site/jaegulchoo">Jaegul Choo</a>,
<a href="https://www.cs.utexas.edu/~pstone/">Peter Stone</a>,
<a href="https://takuseno.github.io/">Takuma Seno</a>.


[[Website]](https://sonyresearch.github.io/simba) [[Paper]](https://arxiv.org/abs/2410.09754)

## Overview

### TL;DR

Stop worrying about algorithms, just change the network architecture to SimBa.

### Method

SimBa is a network architecture designed for RL that avoids overfitting by embedding simplicity bias.

<img src="docs/images/simba_architecture.png" alt="Image description" width="800">

### Results

When integrated SimBA with Soft Actor Critic (SAC), it matches the performance of state-of-the-art RL algorithms.

<img src="docs/images/overview.png" alt="Image description" width="800">


## Getting strated
Expand Down Expand Up @@ -105,8 +140,9 @@ If you find our work useful, please consider citing our paper as follows:

```
@article{lee2024simba,
title={Simba: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning},
author={Hojoon Lee and Dongyoon Hwang and Donghu Kim and Hyunseung Kim and Jun Jet Tai and Kaushik Subramanian and Peter R.Wurman and Jaegul Choo and Peter Stone and Takuma Seno},
title={SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning},
author={Hojoon Lee and Dongyoon Hwang and Donghu Kim and Hyunseung Kim and Jun Jet Tai and Kaushik Subramanian and Peter R. Wurman and Jaegul Choo and Peter Stone and Takuma Seno},
journal={arXiv preprint arXiv:2410.09754},
year={2024}
}
```
2 changes: 2 additions & 0 deletions deps/environment.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -31,3 +31,5 @@ dependencies:
- termcolor==2.4.0
- tqdm==4.66.1
- wandb==0.16.6
- moviepy==1.0.3
- imageio==2.33.1
2 changes: 2 additions & 0 deletions deps/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,5 @@ tensorflow-probability==0.24.0
termcolor==2.4.0
tqdm==4.66.1
wandb==0.16.6
moviepy==1.0.3
imageio==2.33.1
19 changes: 11 additions & 8 deletions docs/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
</head>
<div class="header" id="top">
<h1><span class="bold simba">SimBa </span><br/>Simplicity Bias for Scaling Parameters in Deep Reinforcement Learning</h1>
<h3><a class="bold default-color">Under review</span><br/></h3>
<h3><a class="bold default-color">Preprint</span><br/></h3>
<table class="authors">
<tbody>
<tr>
Expand Down Expand Up @@ -49,7 +49,7 @@ <h4>
</tbody>
</table>
<div class="links">
<a href="https://arxiv.org" class="btn"><i class="fa">&#xf1c1;</i>&ensp;Paper</a><a href="https://github.com/joonleesky/scale_rl" class="btn"><i class="fa fa-github"></i>&ensp;Code</a>
<a href="http://arxiv.org/abs/2410.09754" class="btn"><i class="fa">&#xf1c1;</i>&ensp;Paper</a><a href="https://github.com/SonyResearch/simba" class="btn"><i class="fa fa-github"></i>&ensp;Code</a>
</div>
</div>
<div class="content">
Expand Down Expand Up @@ -313,7 +313,7 @@ <h2>Paper</h2>
<span class="italic">Hojoon Lee&ast;, Dongyoon Hwang&ast;, Donghu Kim,<br/>
Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman,<br/>
Jaegul Choo, Peter Stone, Takuma Seno</span><br/><br/>
<a href="https://arxiv.org">arXiv preprint</a><br/><br/>
<a href="https://arxiv.org/abs/2410.09754">arXiv preprint</a><br/><br/>
<div class="page" style="background-image: url(thumbnails/0.png);"></div>
<div class="page" style="background-image: url(thumbnails/1.png);"></div>
<div class="page" style="background-image: url(thumbnails/2.png);"></div>
Expand All @@ -324,9 +324,6 @@ <h2>Paper</h2>
<div class="page" style="background-image: url(thumbnails/7.png);"></div>
<div class="page" style="background-image: url(thumbnails/8.png);"></div>
<div class="page" style="background-image: url(thumbnails/9.png);"></div>
<div style="margin: auto; margin-top: 32px;">
<a href="https://arxiv.org/abs/2310.16828">View on arXiv</a>
</div>
</div>
<div class="hr"></div>
<div style="padding-bottom: 64px; text-align: center;">
Expand All @@ -335,8 +332,14 @@ <h2>Citation</h2>
If you find our work useful, please consider citing the paper as follows:
</p>
<div id="bibtex-text" class="bibtexsection" onClick="window.getSelection().selectAllChildren(document.getElementById('bibtex-text'));">

</div>
@article{lee2024simba,
title={SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning},
author={Hojoon Lee and Dongyoon Hwang and Donghu Kim and Hyunseung Kim and Jun Jet Tai and
Kaushik Subramanian and Peter R. Wurman and Jaegul Choo and Peter Stone and Takuma Seno},
journal={arXiv preprint arXiv:2410.09754},
year={2024}
}
</div>
</div>
</div>
<footer>
Expand Down

0 comments on commit a25db74

Please sign in to comment.