-
-
Notifications
You must be signed in to change notification settings - Fork 216
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Newmark beta method #2187
base: master
Are you sure you want to change the base?
Newmark beta method #2187
Changes from all commits
6dbdcd1
8e1a1e3
b3634dc
d7d479e
1380a6c
7b41813
2e65db7
9bb2401
f67ae0c
c2c7db3
68498e9
302903d
b07101b
ff5c291
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
name = "OrdinaryDiffEqNewmark" | ||
uuid = "d204908a-63b9-11ef-18f5-cfec7123a93b" | ||
authors = ["Dennis Ogiermann <[email protected]>"] | ||
version = "0.0.1" | ||
|
||
[deps] | ||
DiffEqBase = "2b5f629d-d688-5b77-993f-72d75c75574e" | ||
FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898" | ||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" | ||
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" | ||
MuladdMacro = "46d2c3a1-f734-5fdb-9937-b9b9aeba4221" | ||
OrdinaryDiffEqCore = "bbf590c4-e513-4bbe-9b18-05decba2e5d8" | ||
OrdinaryDiffEqDifferentiation = "4302a76b-040a-498a-8c04-15b101fed76b" | ||
OrdinaryDiffEqNonlinearSolve = "127b3ac7-2247-4354-8eb6-78cf4e7c58e8" | ||
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd" | ||
Reexport = "189a3867-3050-52da-a836-e630ba90ab69" | ||
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462" | ||
TruncatedStacktraces = "781d530d-4396-4725-bb49-402e4bee1e77" | ||
|
||
[compat] | ||
DiffEqBase = "6.152.2" | ||
DiffEqDevTools = "2.44.4" | ||
FastBroadcast = "0.3.5" | ||
LinearAlgebra = "<0.0.1, 1" | ||
MacroTools = "0.5.13" | ||
MuladdMacro = "0.2.4" | ||
OrdinaryDiffEqCore = "1.1" | ||
OrdinaryDiffEqDifferentiation = "<0.0.1, 1" | ||
OrdinaryDiffEqNonlinearSolve = "<0.0.1, 1" | ||
Random = "<0.0.1, 1" | ||
RecursiveArrayTools = "3.27.0" | ||
Reexport = "1.2.2" | ||
SafeTestsets = "0.1.0" | ||
SciMLBase = "2.48.1" | ||
Test = "<0.0.1, 1" | ||
TruncatedStacktraces = "1.4.0" | ||
julia = "1.10" | ||
|
||
[extras] | ||
DiffEqDevTools = "f3b72e0c-5b89-59e1-b016-84e28bfd966d" | ||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" | ||
SafeTestsets = "1bc83da4-3b8d-516f-aca4-4fe02f6d838f" | ||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" | ||
|
||
[targets] | ||
test = ["DiffEqDevTools", "Random", "SafeTestsets", "Test"] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
module OrdinaryDiffEqNewmark | ||
|
||
import OrdinaryDiffEqCore: alg_order, calculate_residuals!, | ||
initialize!, perform_step!, @unpack, unwrap_alg, | ||
calculate_residuals, alg_extrapolates, | ||
OrdinaryDiffEqAlgorithm, | ||
OrdinaryDiffEqMutableCache, OrdinaryDiffEqConstantCache, | ||
OrdinaryDiffEqNewtonAdaptiveAlgorithm, | ||
OrdinaryDiffEqNewtonAlgorithm, | ||
OrdinaryDiffEqImplicitSecondOrderAlgorithm, | ||
OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm, | ||
DEFAULT_PRECS, | ||
OrdinaryDiffEqAdaptiveAlgorithm, CompiledFloats, uses_uprev, | ||
alg_cache, _vec, _reshape, @cache, isfsal, full_cache, | ||
constvalue, _unwrap_val, _ode_interpolant, | ||
trivial_limiter!, _ode_interpolant!, | ||
isesdirk, issplit, | ||
ssp_coefficient, get_fsalfirstlast, generic_solver_docstring | ||
using TruncatedStacktraces, MuladdMacro, MacroTools, FastBroadcast, RecursiveArrayTools | ||
using SciMLBase: DynamicalODEFunction | ||
using LinearAlgebra: mul!, I | ||
import OrdinaryDiffEqCore | ||
|
||
using OrdinaryDiffEqDifferentiation: UJacobianWrapper, dolinsolve | ||
using OrdinaryDiffEqNonlinearSolve: du_alias_or_new, markfirststage!, build_nlsolver, | ||
nlsolve!, nlsolvefail, isnewton, get_W, set_new_W!, | ||
NLNewton, COEFFICIENT_MULTISTEP | ||
|
||
using Reexport | ||
@reexport using DiffEqBase | ||
|
||
include("algorithms.jl") | ||
include("alg_utils.jl") | ||
include("newmark_caches.jl") | ||
include("newmark_nlsolve.jl") | ||
include("newmark_perform_step.jl") | ||
|
||
export NewmarkBeta | ||
|
||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
alg_extrapolates(alg::NewmarkBeta) = true | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I will recover the extrapolation once we have ironed out the remaining parts. |
||
|
||
alg_order(alg::NewmarkBeta) = 1 | ||
|
||
is_mass_matrix_alg(alg::NewmarkBeta) = true |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
|
||
""" | ||
NewmarkBeta | ||
|
||
Classical Newmark-β method to solve second order ODEs, possibly in mass matrix form. | ||
Local truncation errors are estimated with the estimate of Zienkiewicz and Xie. | ||
|
||
## References | ||
|
||
Newmark, Nathan (1959), "A method of computation for structural dynamics", | ||
Journal of the Engineering Mechanics Division, 85 (EM3) (3): 67–94, doi: | ||
https://doi.org/10.1061/JMCEA3.0000098 | ||
|
||
Zienkiewicz, O. C., and Y. M. Xie. "A simple error estimator and adaptive | ||
time stepping procedure for dynamic analysis." Earthquake engineering & | ||
structural dynamics 20.9 (1991): 871-887, doi: | ||
https://doi.org/10.1002/eqe.4290200907 | ||
""" | ||
struct NewmarkBeta{PT, F, F2, P, CS, AD, FDT, ST, CJ} <: | ||
OrdinaryDiffEqAdaptiveImplicitSecondOrderAlgorithm{CS, AD, FDT, ST, CJ} | ||
β::PT | ||
γ::PT | ||
linsolve::F | ||
nlsolve::F2 | ||
precs::P | ||
end | ||
|
||
function NewmarkBeta(β, γ; chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), | ||
concrete_jac = nothing, diff_type = Val{:forward}, | ||
linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), | ||
extrapolant = :linear) | ||
NewmarkBeta{ | ||
typeof(β), typeof(linsolve), typeof(nlsolve), typeof(precs), | ||
_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( | ||
β, γ, | ||
linsolve, | ||
nlsolve, | ||
precs) | ||
end | ||
|
||
# Needed for remake | ||
function NewmarkBeta(; β=0.25, γ=0.5, chunk_size = Val{0}(), autodiff = Val{true}(), standardtag = Val{true}(), | ||
concrete_jac = nothing, diff_type = Val{:forward}, | ||
linsolve = nothing, precs = DEFAULT_PRECS, nlsolve = NLNewton(), | ||
extrapolant = :linear) | ||
NewmarkBeta{ | ||
typeof(β), typeof(linsolve), typeof(nlsolve), typeof(precs), | ||
_unwrap_val(chunk_size), _unwrap_val(autodiff), diff_type, _unwrap_val(standardtag), _unwrap_val(concrete_jac)}( | ||
β, γ, | ||
linsolve, | ||
nlsolve, | ||
precs) | ||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
@cache struct NewmarkBetaCache{uType, rateType, parameterType, N} <: OrdinaryDiffEqMutableCache | ||
u::uType # Current solution | ||
uprev::uType # Previous solution | ||
upred::uType # Predictor solution | ||
fsalfirst::rateType | ||
β::parameterType # newmark parameter 1 | ||
γ::parameterType # newmark parameter 2 | ||
nlsolver::N # Inner solver | ||
tmp::uType # temporary, because it is required. | ||
end | ||
|
||
function alg_cache(alg::NewmarkBeta, u, rate_prototype, ::Type{uEltypeNoUnits}, | ||
::Type{uBottomEltypeNoUnits}, ::Type{tTypeNoUnits}, uprev, uprev2, f, t, | ||
dt, reltol, p, calck, | ||
::Val{true}) where {uEltypeNoUnits, uBottomEltypeNoUnits, tTypeNoUnits} | ||
|
||
β = alg.β | ||
γ = alg.γ | ||
upred = zero(u) | ||
fsalfirst = zero(rate_prototype) | ||
|
||
@assert 0.0 ≤ β ≤ 0.5 | ||
@assert 0.0 ≤ γ ≤ 1.0 | ||
|
||
c = 1.0 | ||
γ̂ = NaN # FIXME | ||
nlsolver = build_nlsolver(alg, u.x[1], uprev.x[1], p, t, dt, f.f1, rate_prototype.x[1], uEltypeNoUnits, | ||
uBottomEltypeNoUnits, tTypeNoUnits, γ̂, c, Val(true)) | ||
|
||
tmp = zero(u) | ||
NewmarkBetaCache(u, uprev, upred, fsalfirst, β, γ, nlsolver, tmp) | ||
end | ||
|
||
get_fsalfirstlast(cache::NewmarkBetaCache, u) = (cache.fsalfirst, u) # FIXME use fsal |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
function initialize!(integrator, cache::NewmarkBetaCache) | ||
duprev, uprev = integrator.uprev.x | ||
integrator.f(cache.fsalfirst, integrator.uprev, integrator.p, integrator.t) | ||
integrator.stats.nf += 1 | ||
integrator.fsalfirst = cache.fsalfirst | ||
integrator.fsallast = cache.fsalfirst | ||
# integrator.fsallast = du_alias_or_new(cache.nlsolver, integrator.fsalfirst) | ||
return | ||
end | ||
|
||
@muladd function perform_step!(integrator, cache::NewmarkBetaCache, repeat_step = false) | ||
@unpack t, dt, f, p = integrator | ||
@unpack upred, β, γ, nlsolver = cache | ||
|
||
# This is derived from the idea stated in Nonlinear Finite Elements by Peter Wriggers, Ch 6.1.2 . | ||
# | ||
# Let us introduce the notation v = u' and a = u'' = v' such that we write the ODE problem as Ma = f(v,u,t). | ||
# For the time discretization we assume that: | ||
# uₙ₊₁ = uₙ + Δtₙ vₙ + Δtₙ²/2 aₙ₊ₐ₁ | ||
# vₙ₊₁ = vₙ + Δtₙ aₙ₊ₐ₂ | ||
# with a₁ = 1-2β and a₂ = 1-γ, such that | ||
# uₙ₊₁ = uₙ + Δtₙ vₙ + Δtₙ²/2 [(1-2β)aₙ + 2βaₙ₊₁] | ||
# vₙ₊₁ = vₙ + Δtₙ [(1-γ)aₙ + γaₙ₊₁] | ||
# | ||
# This allows us to reduce the implicit discretization to have only aₙ₊₁ as the unknown: | ||
# Maₙ₊₁ = f(vₙ₊₁(aₙ₊₁), uₙ₊₁(aₙ₊₁), tₙ₊₁) | ||
# = f(vₙ + Δtₙ [(1-γ)aₙ + γaₙ₊₁], uₙ + Δtₙ vₙ + Δtₙ²/2 [(1-2β)aₙ + 2βaₙ₊₁], tₙ₊₁) | ||
# Such that we have to solve the nonlinear problem | ||
# Maₙ₊₁ - f(vₙ₊₁(aₙ₊₁), uₙ₊₁(aₙ₊₁), tₙ₊₁) = 0 | ||
# for aₙ₊₁'' in each time step. | ||
|
||
# For the Newton method the linearization becomes | ||
# M - (dₐuₙ₊₁ ∂fᵤ + dₐvₙ₊₁ ∂fᵥ) = 0 | ||
# M - (Δtₙ²β ∂fᵤ + Δtₙγ ∂fᵥ) = 0 | ||
|
||
M = f.mass_matrix | ||
|
||
# Evaluate predictor | ||
aₙ = integrator.fsalfirst.x[1] | ||
vₙ, uₙ = integrator.uprev.x | ||
|
||
# _tmp = mass_matrix * @.. broadcast=false (α₁ * uprev+α₂ * uprev2) | ||
# nlsolver.tmp = @.. broadcast=false _tmp/(dt * β₀) | ||
|
||
# Note, we switch to notation closer to the SciML implemenation now. Needs to be double checked, also to be consistent with the formulation above | ||
# nlsolve!(...) solves for | ||
# dt⋅f(innertmp + γ̂⋅z, p, t + c⋅dt) + outertmp = z | ||
# So we rewrite the problem | ||
# u(tₙ₊₁)'' - f₁(ũ(tₙ₊₁) + u(tₙ₊₁)'' 2β Δtₙ², ũ(tₙ₊₁)' + u(tₙ₊₁)'' γ Δtₙ,t) = 0 | ||
# z = Δtₙ u(tₙ₊₁)'': | ||
# z - Δtₙ f₁(ũ(tₙ₊₁) + z 2β Δtₙ, ũ(tₙ₊₁)' + z γ,t) = 0 | ||
# Δtₙ f₁(ũ(tₙ₊₁) + z 2β Δtₙ, ũ(tₙ₊₁)' + z γ,t) = z | ||
# γ̂ = [γ, 2β Δtₙ]: | ||
# Δtₙ f₁(ũ(tₙ₊₁) + z γ̂₂ , ũ(tₙ₊₁)' + z γ̂₁ ,t) = z | ||
# innertmp = [ũ(tₙ₊₁)', ũ(tₙ₊₁)]: | ||
# Δtₙ f₁(innertmp₂ + z 2β Δtₙ², innertmp₁ + z γ Δtₙ,t) = z | ||
# Note: innertmp = nlsolve.tmp | ||
# nlsolver.γ = ??? | ||
# nlsolver.tmp .= vₙ # TODO check f tmp is potentially modified and if not elimiate the allocation of upred_full | ||
# nlsolver.z .= aₙ | ||
# aₙ₊₁ = nlsolve!(nlsolver, integrator, cache, repeat_step) / dt | ||
# nlsolvefail(nlsolver) && return | ||
|
||
# Manually unrolled to see what needs to go where | ||
aₙ₊₁ = copy(aₙ) # acceleration term | ||
atmp = copy(aₙ) | ||
J = zeros(length(aₙ), length(aₙ)) | ||
for i in 1:10 # = max iter - Newton loop for eq [1] above | ||
uₙ₊₁ = uₙ + dt * vₙ + dt^2/2 * ((1-2β)*aₙ + 2β*aₙ₊₁) | ||
vₙ₊₁ = vₙ + dt * ((1-γ)*aₙ + γ*aₙ₊₁) | ||
# Compute residual | ||
f.f1(atmp, vₙ₊₁, uₙ₊₁, p, t) | ||
integrator.stats.nf += 1 | ||
residual = M*(aₙ₊₁ - atmp) | ||
# Compute jacobian | ||
f.jac(J, vₙ₊₁, uₙ₊₁, (γ*dt, β*dt*dt), p, t) | ||
# Solve for increment | ||
Δaₙ₊₁ = (M-J) \ residual | ||
aₙ₊₁ .-= Δaₙ₊₁ # Looks like I messed up the signs somewhere :') | ||
increment_norm = integrator.opts.internalnorm(Δaₙ₊₁, t) | ||
increment_norm < 1e-4 && break | ||
i == 10 && error("Newton diverged. ||Δaₙ₊₁||=$increment_norm") | ||
Comment on lines
+69
to
+82
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. @oscardssmith I think I need some help here regarding the integration with OrdinaryDiffEqNonlinearSolve.jl . A critical missing piece is an interface for the evaluation of the Jacobian in a suitable form (especially via ad). For now I have just bypassed this with a custom jacobian function, e.g. for the harmonic oscillator in the test
because many implicit second order ODE methods requires that J = Δtₙ²β ∂fᵤ + Δtₙγ ∂fᵥ . See above for a "full" derivation. |
||
end | ||
|
||
u = ArrayPartition( | ||
vₙ + dt * ((1-γ)*aₙ + γ*aₙ₊₁), | ||
uₙ + dt * vₙ + dt^2/2 * ((1-2β)*aₙ + 2β*aₙ₊₁), | ||
) | ||
|
||
f(integrator.fsallast, u, p, t + dt) | ||
integrator.stats.nf += 1 | ||
integrator.u = u | ||
|
||
# | ||
if integrator.opts.adaptive | ||
if integrator.success_iter == 0 | ||
integrator.EEst = one(integrator.EEst) | ||
else | ||
# Zienkiewicz and Xie (1991) Eq. 21 | ||
δaₙ₊₁ = (integrator.fsallast.x[1] - aₙ₊₁) | ||
integrator.EEst = dt*dt/2 * (2*β - 1/3) * integrator.opts.internalnorm(δaₙ₊₁, t) | ||
end | ||
end | ||
|
||
return | ||
end |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
using OrdinaryDiffEqNewmark, Test, RecursiveArrayTools, DiffEqDevTools, Statistics | ||
|
||
# Newmark methods with harmonic oscillator | ||
@testset "Harmonic Oscillator" begin | ||
u0 = fill(0.0, 2) | ||
v0 = ones(2) | ||
function f1_harmonic!(dv, v, u, p, t) | ||
dv .= -u | ||
end | ||
function harmonic_jac(J, v, u, weights, p, t) | ||
J[1,1] = weights[1] * (0.0) + weights[2] * (-1.0) | ||
J[1,2] = weights[1] * (0.0) + weights[2] * ( 0.0) | ||
J[2,2] = weights[1] * (0.0) + weights[2] * (-1.0) | ||
J[2,1] = weights[1] * (0.0) + weights[2] * ( 0.0) | ||
end | ||
function f2_harmonic!(du, v, u, p, t) | ||
du .= v | ||
end | ||
Comment on lines
+16
to
+18
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. What is the intended way to enforce this automatically? We do not have a |
||
function harmonic_analytic(y0, p, x) | ||
v0, u0 = y0.x | ||
ArrayPartition(-u0 * sin(x) + v0 * cos(x), u0 * cos(x) + v0 * sin(x)) | ||
end | ||
|
||
ff_harmonic! = DynamicalODEFunction(f1_harmonic!, f2_harmonic!; jac=harmonic_jac, analytic = harmonic_analytic) | ||
prob = DynamicalODEProblem(ff_harmonic!, v0, u0, (0.0, 5.0)) | ||
dts = 1.0 ./ 2.0 .^ (5:-1:0) | ||
|
||
sim = test_convergence(dts, prob, NewmarkBeta(), dense_errors = true) | ||
@test sim.𝒪est[:l2]≈2 rtol=1e-1 | ||
end | ||
|
||
# Newmark methods with damped oscillator | ||
@testset "Damped Oscillator" begin | ||
function damped_oscillator!(a, v, u, p, t) | ||
@. a = -u - 0.5 * v | ||
return nothing | ||
end | ||
function damped_jac(J, v, u, weights, p, t) | ||
J[1,1] = weights[1] * (-0.5) + weights[2] * (-1.0) | ||
end | ||
function damped_oscillator_analytic(du0_u0, p, t) | ||
ArrayPartition( | ||
[ | ||
exp(-t / 4) / 15 * (15 * du0_u0[1] * cos(sqrt(15) * t / 4) - | ||
sqrt(15) * (du0_u0[1] + 4 * du0_u0[2]) * sin(sqrt(15) * t / 4)) | ||
], # du | ||
[ | ||
exp(-t / 4) / 15 * (15 * du0_u0[2] * cos(sqrt(15) * t / 4) + | ||
sqrt(15) * (4 * du0_u0[1] + du0_u0[2]) * sin(sqrt(15) * t / 4)) | ||
] | ||
) | ||
end | ||
ff_harmonic_damped! = DynamicalODEFunction( | ||
damped_oscillator!, | ||
(du, v, u, p, t) -> du = v; | ||
jac=damped_jac, | ||
analytic = damped_oscillator_analytic | ||
) | ||
|
||
prob = DynamicalODEProblem(ff_harmonic_damped!, [0.0], [1.0], (0.0, 10.0)) | ||
dts = 1.0 ./ 2.0 .^ (5:-1:0) | ||
|
||
sim = test_convergence(dts, prob, NewmarkBeta(), dense_errors = true) | ||
@test sim.𝒪est[:l2]≈2 rtol=1e-1 | ||
|
||
# TODO | ||
# function damped_oscillator(v, u, p, t) | ||
# return -u - 0.5 * v | ||
# end | ||
# ... | ||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I will strip down the imports to the used ones after we have fixed the remaining parts.