Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onert-micro] Enable ReduceMean op #14520

Merged
merged 1 commit into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion onert-micro/onert-micro/include/pal/mcu/KernelsToBuild.lst
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ REGISTER_KERNEL(LOG_SOFTMAX, LogSoftmax)
REGISTER_KERNEL(MUL, Mul)
#/*REGISTER_KERNEL(MIRROR_PAD, MirrorPad)*/
REGISTER_KERNEL(MAXIMUM, Maximum)
#/*REGISTER_KERNEL(MEAN, Mean)*/
REGISTER_KERNEL(MEAN, Mean)
REGISTER_KERNEL(MAX_POOL_2D, MaxPool2D)
REGISTER_KERNEL(MINIMUM, Minimum)
REGISTER_KERNEL(SHAPE, Shape)
Expand Down
69 changes: 63 additions & 6 deletions onert-micro/onert-micro/include/pal/mcu/PALReduceCommon.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,10 +29,9 @@ namespace pal

// This method parses the input 'axis' to remove duplicates and handle negative
// values, and returns a valid 'out_axis'
inline bool resolveAxis(const int num_dims, const int *axis, const int64_t num_axis,
inline bool resolveAxis(const int num_dims, const int *axis, const int64_t num_axis, int *out_axis,
int *out_num_axis)
{
int out_axis[2];
*out_num_axis = 0; // Just in case.
// Short-circuit axis resolution for scalars; the axis will go unused.
if (num_dims == 0)
Expand Down Expand Up @@ -75,15 +74,15 @@ inline bool resolveAxis(const int num_dims, const int *axis, const int64_t num_a
// Computes the generic value (i.e., sum/max/min/prod) of elements across
// dimensions given in axis. It needs to pass in init_value and reducer.
template <typename T>
inline void ReduceGeneric(const T *input_data, const int *input_dims, const int input_num_dims,
inline bool ReduceGeneric(const T *input_data, const int *input_dims, const int input_num_dims,
T *output_data, const int *axis, const int64_t num_axis_dimensions,
T init_value, const int output_flat_size, T reducer(const T, const T))
{
// Return early when input shape has zero dim.
for (int i = 0; i < input_num_dims; ++i)
{
if (input_dims[i] == 0)
return;
return false;
}

for (size_t idx = 0; idx < output_flat_size; ++idx)
Expand All @@ -93,9 +92,11 @@ inline void ReduceGeneric(const T *input_data, const int *input_dims, const int

// Resolve axis.
int num_resolved_axis = 0;
if (!resolveAxis(input_num_dims, axis, num_axis_dimensions, &num_resolved_axis))
int resolved_axis[2];

if (!resolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis, &num_resolved_axis))
{
return;
return false;
}

int temp_index[5];
Expand All @@ -112,6 +113,62 @@ inline void ReduceGeneric(const T *input_data, const int *input_dims, const int
reducedOutputOffset(input_num_dims, input_dims, temp_index, num_resolved_axis, axis);
output_data[output_offset] = reducer(output_data[output_offset], input_data[input_offset]);
} while (nextIndex(input_num_dims, input_dims, temp_index));

return true;
}

// This method expects that output_data has been initialized.
template <typename T>
inline bool reduceSumImpl(const T *input_data, const int *input_dims, const int input_num_dims,
T *output_data, const int *axis, const int num_axis,
const int num_outputs)
{
return ReduceGeneric<T>(input_data, input_dims, input_num_dims, output_data, axis, num_axis,
static_cast<T>(0), num_outputs,
[](const T current, const T in) -> T { return in + current; });
}

template <typename T>
inline bool Mean(const int *input_dims, const T *input_data, const int input_num_dims,
T *output_data, const int num_outputs, const int *axis,
const int num_axis_dimensions)
{
if (!reduceSumImpl<T>(input_data, input_dims, input_num_dims, output_data, axis,
num_axis_dimensions, num_outputs))
{
return false;
}

// Resolve axis again for computing mean
int num_resolved_axis = 0;
int resolved_axis[2];

if (!resolveAxis(input_num_dims, axis, num_axis_dimensions, resolved_axis, &num_resolved_axis))
{
return false;
}

// Calculate mean by dividing output_data by num of aggregated element.
size_t num_elements_in_axis = 1;
for (int idx = 0; idx < num_resolved_axis; ++idx)
{
size_t current = static_cast<size_t>(input_dims[resolved_axis[idx]]);
// Overflow prevention.
if (current > (std::numeric_limits<size_t>::max() / num_elements_in_axis))
{
return false;
}
num_elements_in_axis *= current;
}

if (num_elements_in_axis > 0)
{
for (size_t idx = 0; idx < num_outputs; ++idx)
{
output_data[idx] = static_cast<T>(output_data[idx] / static_cast<T>(num_elements_in_axis));
}
}
return true;
}

} // namespace pal
Expand Down
132 changes: 132 additions & 0 deletions onert-micro/onert-micro/include/test_models/mean/FloatMeanKernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
/*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef ONERT_MICRO_TEST_MODELS_FLOAT_MEAN_KERNEL_H
#define ONERT_MICRO_TEST_MODELS_FLOAT_MEAN_KERNEL_H

#include "TestDataMeanBase.h"

namespace onert_micro
{
namespace test_model
{
namespace mean_float
{
/*
* Mean Kernel:
*
* Input(1, 8, 8, 4)
* |
* Mean
* |
* Output(1, 8, 8, 1)
*/
const unsigned char test_kernel_model_circle[] = {
0x18, 0x00, 0x00, 0x00, 0x43, 0x49, 0x52, 0x30, 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x08, 0x00, 0x10, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x48, 0x00, 0x00, 0x00, 0x94, 0x01, 0x00, 0x00, 0xb0, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x34, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00,
0x0e, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00,
0x6c, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6d, 0x61, 0x69, 0x6e,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00,
0x16, 0x00, 0x00, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x08, 0x00, 0x0e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1b, 0x14, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x84, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x94, 0xff, 0xff, 0xff, 0x0c, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x6f, 0x66, 0x6d, 0x00, 0x04, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0f, 0x00, 0x08, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x1c, 0x00, 0x00, 0x00,
0x11, 0x00, 0x00, 0x00, 0x72, 0x65, 0x64, 0x75, 0x63, 0x74, 0x69, 0x6f, 0x6e, 0x5f, 0x69, 0x6e,
0x64, 0x69, 0x63, 0x65, 0x73, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00,
0x69, 0x66, 0x6d, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x0c, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x11, 0x00, 0x00, 0x00, 0x4f, 0x4e, 0x45, 0x2d,
0x74, 0x66, 0x6c, 0x69, 0x74, 0x65, 0x32, 0x63, 0x69, 0x72, 0x63, 0x6c, 0x65, 0x00, 0x00, 0x00};

const std::vector<float> input_data = {
-73.19745, -62.66789, -15.868883, -69.99245, -86.77558, -47.07158, -59.42521, 5.4639907,
-15.482954, 58.430527, 30.962307, -8.479264, 64.87171, 67.23879, 54.92413, -75.001656,
4.095402, -11.012883, 1.7135352, -13.673498, 87.62411, 88.27154, 86.84994, 61.68961,
-67.81691, -36.073383, 54.346165, -83.79197, 35.099308, -23.05919, 26.401726, 20.99549,
-68.63421, -93.027596, 20.0895, -16.020033, 57.642673, 8.66057, 39.191364, 29.198711,
-5.9334397, 11.010835, 82.77485, -34.213863, -38.869553, 16.539444, 51.105484, 25.632273,
-55.436813, -26.42026, 77.96095, -59.019154, -82.52756, -94.416176, -83.77591, 46.43875,
0.7686069, 57.346397, -89.24597, -8.594538, -98.168755, -33.18969, -41.993664, 13.660449,
50.10378, 9.801906, -4.2520585, 27.210102, 48.8715, -19.44194, 38.652195, 23.77053,
-82.0674, -93.96652, 99.148094, 22.794533, 0.5715625, 0.84766275, 87.92019, 37.35077,
-32.265865, 67.46462, -24.098558, 87.36311, 90.409134, 33.023712, -15.923093, 40.05901,
-12.006578, 31.039108, -63.882004, -73.78517, -24.940235, 30.9098, 31.745, -89.77378,
-46.777866, 58.79768, -24.669464, 96.29413, 61.62126, 45.743416, 38.30191, 71.805405,
-31.20969, 33.56755, -1.926614, 72.13441, -22.292011, -16.355177, 21.689945, 87.95895,
-98.04168, 93.35264, -12.684541, -18.105795, 30.574284, 42.890903, -94.390366, -47.013157,
-98.465126, 28.63009, -83.54015, 86.82799, 0.6768988, 6.070787, 43.308678, 1.8557712,
-73.0521, -90.86948, 43.77232, 68.301056, 66.867775, 97.34002, -59.342876, -51.359367,
17.27793, 52.223003, -3.9915564, 29.598532, 34.474148, -80.920456, -30.45005, -17.469683,
-67.02992, -34.23075, -35.53944, 61.557327, -66.91338, -94.03176, -45.88021, 97.36409,
96.45681, -32.885677, 72.40823, -62.28857, 20.948895, 1.259363, -84.97583, 60.83626,
-94.692535, -15.315798, -99.92936, 40.56625, -8.6356325, -7.3984733, 56.255993, -31.700819,
62.08311, 52.800938, 32.27374, -99.46793, -40.924038, 24.67266, -58.954403, 42.263252,
-72.13501, -58.40316, 14.619292, -43.400642, -82.13468, -47.54976, -42.642033, -8.409653,
74.90983, 97.76474, -71.152916, 83.61312, -37.22972, 21.405357, -56.848846, 90.63024,
-70.21143, -29.522697, 94.9647, 74.74478, 37.564766, -40.22343, -63.337795, -65.86191,
-48.546135, -58.20052, 36.73888, 67.78194, -43.096832, 94.7046, 9.798892, -79.97487,
-15.868657, -84.753975, 4.8745494, -18.346195, 54.9818, 75.854, 41.797707, -5.673281,
-36.31264, -73.4931, -41.090492, 6.3805137, -73.66098, 85.20992, 91.28027, -73.26658,
-92.18044, 41.29011, 5.5041995, -73.70062, -16.678818, 30.614132, 92.100555, 11.274231,
-37.915485, 34.91591, 36.32971, -37.70164, -23.708878, 19.026278, -41.71216, 67.325356,
78.23511, -43.154037, 22.667723, 30.742237, -6.086414, 17.191307, 65.828896, -40.83338,
-18.61725, 23.976517, 80.2347, -92.53064, 71.6477, -38.28841, -60.853157, 24.402542};

const std::vector<float> reference_output_data = {
-55.431667, -46.952095, 16.357655, 28.008245, -4.7193613, 81.108795, -33.334023, 14.859333,
-39.398083, 33.673332, 13.409595, 13.601912, -15.728818, -53.57022, -9.9313755, -39.922916,
20.71593, 22.963072, -13.522823, 31.672546, 24.615828, 36.89219, -29.65866, -13.014804,
20.91112, 54.368, 18.141413, 17.750427, -8.869844, -16.984585, -16.636799, 12.978033,
-12.962048, 13.376387, 23.776978, -23.59151, -18.810696, -27.365314, 18.422699, -0.4828272,
-42.342857, 2.1302667, 11.922464, -8.235632, -39.82988, -45.184032, 46.28369, 4.489258,
17.493837, -32.964592, -0.55646133, -4.6420527, -28.523571, 41.74006, -36.128933, 7.3906593,
-29.771688, 29.327526, -1.0928774, 5.232649, 22.122757, 9.025103, -1.7341671, -0.7728319};

} // namespace mean_float

class TestDataFloatMean : public TestDataMeanBase<float>
{
public:
TestDataFloatMean()
{
_input_data = mean_float::input_data;
_reference_output_data = mean_float::reference_output_data;
_test_kernel_model_circle = mean_float::test_kernel_model_circle;
}

~TestDataFloatMean() override = default;
};

} // namespace test_model
} // namespace onert_micro

#endif // ONERT_MICRO_TEST_MODELS_FLOAT_MEAN_KERNEL_H
92 changes: 92 additions & 0 deletions onert-micro/onert-micro/include/test_models/mean/NegMeanKernel.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
/*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef ONERT_MICRO_TEST_MODELS_NEG_MEAN_KERNEL_H
#define ONERT_MICRO_TEST_MODELS_NEG_MEAN_KERNEL_H

#include "TestDataMeanBase.h"

namespace onert_micro
{
namespace test_model
{
namespace neg_input_output_type_mismatch_mean_kernel
{
/*
* Mean Kernel with input output type mismatch:
*
* Input(1, 8, 8, 4) - Float32
* |
* Mean
* |
* Output(1, 8, 8, 1) - Int32
*/
const unsigned char test_kernel_model_circle[] = {
0x18, 0x00, 0x00, 0x00, 0x43, 0x49, 0x52, 0x30, 0x00, 0x00, 0x0e, 0x00, 0x14, 0x00, 0x00, 0x00,
0x0c, 0x00, 0x08, 0x00, 0x10, 0x00, 0x04, 0x00, 0x0e, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00,
0x48, 0x00, 0x00, 0x00, 0x98, 0x01, 0x00, 0x00, 0xb4, 0x01, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x34, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x04, 0x00, 0x06, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0xf8, 0xff, 0xff, 0xff, 0xfc, 0xff, 0xff, 0xff,
0x04, 0x00, 0x04, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00,
0x00, 0x00, 0x0e, 0x00, 0x18, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x08, 0x00, 0x04, 0x00,
0x0e, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00,
0x6c, 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x6d, 0x61, 0x69, 0x6e,
0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00,
0x16, 0x00, 0x00, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x07, 0x00, 0x08, 0x00, 0x0e, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1b, 0x14, 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00,
0x00, 0x00, 0x06, 0x00, 0x08, 0x00, 0x07, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x00,
0x04, 0x00, 0x00, 0x00, 0xd0, 0xff, 0xff, 0xff, 0x10, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x6f, 0x66, 0x6d, 0x00,
0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x14, 0x00, 0x10, 0x00, 0x0f, 0x00, 0x08, 0x00, 0x04, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
0x1c, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x72, 0x65, 0x64, 0x75, 0x63, 0x74, 0x69, 0x6f,
0x6e, 0x5f, 0x69, 0x6e, 0x64, 0x69, 0x63, 0x65, 0x73, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x10, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x08, 0x00, 0x04, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00,
0x03, 0x00, 0x00, 0x00, 0x69, 0x66, 0x6d, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x08, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x10, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x0c, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x11, 0x00, 0x00, 0x00,
0x4f, 0x4e, 0x45, 0x2d, 0x74, 0x66, 0x6c, 0x69, 0x74, 0x65, 0x32, 0x63, 0x69, 0x72, 0x63, 0x6c,
0x65, 0x00, 0x00, 0x00};
} // namespace neg_input_output_type_mismatch_mean_kernel

class NegTestDataInputOutputTypeMismatchMeanKernel : public NegTestDataBase
{
public:
NegTestDataInputOutputTypeMismatchMeanKernel()
{
_test_kernel_model_circle =
neg_input_output_type_mismatch_mean_kernel::test_kernel_model_circle;
}

~NegTestDataInputOutputTypeMismatchMeanKernel() override = default;

const unsigned char *get_model_ptr() override final { return _test_kernel_model_circle; }

protected:
const unsigned char *_test_kernel_model_circle;
};

} // namespace test_model
} // namespace onert_micro

#endif // ONERT_MICRO_TEST_MODELS_NEG_LOG_KERNEL_H
Loading