-
Notifications
You must be signed in to change notification settings - Fork 159
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[luci/pass] Add basic quantization support for weights in GPTQuantizeWeightsWithGPTQPass #14475
Closed
Closed
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,18 +15,235 @@ | |
*/ | ||
|
||
#include "luci/Pass/QuantizeDequantizeWeightsWithGPTQPass.h" | ||
#include "QuantizationUtils.h" | ||
#include "helpers/LayerInfoMap.h" | ||
|
||
#include <luci/IR/CircleNodes.h> | ||
#include <luci/IR/CircleNodeVisitor.h> | ||
#include <luci/Service/Nodes/CircleConst.h> | ||
#include <luci/Log.h> | ||
#include <loco/IR/TensorShape.h> | ||
|
||
#include <cmath> | ||
#include <functional> | ||
|
||
namespace luci | ||
{ | ||
|
||
namespace | ||
{ | ||
|
||
using IterFunc = std::function<void(uint32_t *, loco::TensorShape &, int32_t)>; | ||
|
||
void iterate_per_channel(CircleConst *node, IterFunc func) | ||
{ | ||
loco::TensorShape dimension; | ||
dimension.rank(4); | ||
uint32_t indices[4] = { | ||
0, | ||
}; | ||
int32_t channel_dim_index{0}; | ||
|
||
if (!get_channel_dim_index(node, dimension, channel_dim_index)) | ||
{ | ||
assert(false); | ||
return; | ||
} | ||
|
||
for (indices[0] = 0; indices[0] < dimension.dim(0).value(); indices[0]++) | ||
{ | ||
for (indices[1] = 0; indices[1] < dimension.dim(1).value(); indices[1]++) | ||
{ | ||
for (indices[2] = 0; indices[2] < dimension.dim(2).value(); indices[2]++) | ||
{ | ||
for (indices[3] = 0; indices[3] < dimension.dim(3).value(); indices[3]++) | ||
{ | ||
func(indices, dimension, channel_dim_index); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
size_t calculate_qauntized_value(CircleConst *node, uint32_t *indices, loco::TensorShape &dimension, | ||
int index_channel_dim, std::vector<float> &scaling_factor, | ||
std::vector<float> &max, std::vector<float> &min) | ||
{ | ||
assert(node != nullptr); | ||
|
||
int idx_channel = indices[index_channel_dim]; | ||
|
||
assert(scaling_factor[idx_channel] > 0); | ||
|
||
const float scaling_factor_inv = 1.0 / scaling_factor[idx_channel]; | ||
auto data = node->at<loco::DataType::FLOAT32>(cal_offset(dimension, indices)); | ||
auto data_clipped = std::min(std::max(data, max[idx_channel]), min[idx_channel]); | ||
|
||
return static_cast<int32_t>(std::round((data_clipped - min[idx_channel]) * scaling_factor_inv)); | ||
} | ||
|
||
void cal_minmax_per_channel(CircleConst *node, std::vector<float> &min, std::vector<float> &max) | ||
{ | ||
loco::TensorShape dimension; | ||
dimension.rank(4); | ||
int32_t index_channel_dim{0}; | ||
|
||
if (!get_channel_dim_index(node, dimension, index_channel_dim)) | ||
{ | ||
throw std::runtime_error("GPTQPass: Failed to get channel dim index."); | ||
} | ||
auto size = dimension.dim(index_channel_dim).value(); | ||
|
||
std::vector<bool> has_min_max_value(size, false); | ||
min.resize(size); | ||
max.resize(size); | ||
|
||
auto cal_minmax = [&](uint32_t *indices, loco::TensorShape &dimension, int index_channel_dim) { | ||
int idx_channel = indices[index_channel_dim]; | ||
auto data = node->at<loco::DataType::FLOAT32>(cal_offset(dimension, indices)); | ||
if (has_min_max_value[idx_channel]) | ||
{ | ||
min[idx_channel] = std::min(data, min[idx_channel]); | ||
max[idx_channel] = std::max(data, max[idx_channel]); | ||
} | ||
else | ||
{ | ||
min[idx_channel] = data; | ||
max[idx_channel] = data; | ||
has_min_max_value[idx_channel] = true; | ||
} | ||
}; | ||
|
||
iterate_per_channel(node, cal_minmax); | ||
} | ||
|
||
/** | ||
* @brief Compute the scale and zero point for the given range of values | ||
*/ | ||
void compute_asym_scale_zp(float min, float max, loco::DataType data_type, float &scaling_factor, | ||
int64_t &zp, float &nudged_min, float &nudged_max) | ||
{ | ||
LOGGER(l); | ||
|
||
assert(min <= max); | ||
|
||
const int32_t kMinScale = 0; | ||
const int32_t kMaxScale = data_type == loco::DataType::U4 ? 15 : 255; | ||
|
||
const double qmin_double = kMinScale; | ||
const double qmax_double = kMaxScale; | ||
const double rmin = std::fmin(0, min); | ||
const double rmax = std::fmax(0, max); | ||
const double qrange = qmax_double - qmin_double; | ||
assert(qrange > 0); | ||
|
||
double scale = (rmax - rmin) / qrange; | ||
double zero_point_double = 0; | ||
uint8_t nudged_zero_point = 0; | ||
|
||
if (scale == 0) | ||
{ | ||
WARN(l) << "GPTQPass: The minimum and maximum values are the same." << std::endl; | ||
if (min >= 0 && max >= 0) | ||
zero_point_double = kMinScale; | ||
else | ||
zero_point_double = kMaxScale; | ||
} | ||
else | ||
zero_point_double = qmin_double - rmin / scale; | ||
if (min >= 0) | ||
{ | ||
assert(min >= 0 && max >= 0); | ||
nudged_zero_point = kMinScale; | ||
scale = max / qrange; | ||
if (min > 0 && max > 0) | ||
WARN(l) << "GPTQPass: The minimum and maximum values are all positive." << std::endl; | ||
} | ||
else if (max < 0) | ||
{ | ||
assert(min < 0 && max < 0); | ||
nudged_zero_point = kMaxScale; | ||
scale = -min / qrange; | ||
WARN(l) << "GPTQPass: The minimum and maximum values are all negative." << std::endl; | ||
} | ||
else | ||
{ | ||
assert(min < 0 && max >= 0); | ||
nudged_zero_point = fp32_to_uint8_cast(std::round(zero_point_double)); | ||
} | ||
|
||
// protect scale from being very low due to overflow | ||
if (scale < 1e-5) | ||
{ | ||
scale = 1e-5; | ||
nudged_zero_point = fp32_to_uint8_cast(std::round(qmin_double - rmin / scale)); | ||
} | ||
|
||
nudged_min = static_cast<float>((qmin_double - nudged_zero_point) * scale); | ||
nudged_max = static_cast<float>((qmax_double - nudged_zero_point) * scale); | ||
|
||
scaling_factor = scale; | ||
zp = nudged_zero_point; | ||
} | ||
|
||
void asymmetric_wquant_per_channel(CircleConst *node, std::vector<float> &min, | ||
std::vector<float> &max, std::vector<float> &scaling_factor, | ||
std::vector<int64_t> &zp, std::vector<float> &nudged_min, | ||
std::vector<float> &nudged_max, loco::DataType output_type) | ||
{ | ||
assert(node->dtype() == loco::DataType::FLOAT32); | ||
assert(output_type == loco::DataType::U8 || output_type == loco::DataType::U4); | ||
|
||
const int32_t kMinScale = 0; | ||
const int32_t kMaxScale = output_type == loco::DataType::U4 ? 15 : 255; | ||
|
||
uint32_t input_size = node->size<loco::DataType::FLOAT32>(); | ||
std::vector<int32_t> quantized_values(input_size); | ||
|
||
for (size_t i = 0; i < min.size(); ++i) | ||
{ | ||
compute_asym_scale_zp(min[i], max[i], output_type, scaling_factor[i], zp[i], nudged_min[i], | ||
nudged_max[i]); | ||
} | ||
|
||
auto quantize = [&](uint32_t *indices, loco::TensorShape &dimension, int index_channel_dim) { | ||
quantized_values[cal_offset(dimension, indices)] = calculate_qauntized_value( | ||
node, indices, dimension, index_channel_dim, scaling_factor, nudged_max, nudged_min); | ||
}; | ||
iterate_per_channel(node, quantize); | ||
|
||
node->dtype(loco::DataType::U8); // Change the type of tensor | ||
node->size<loco::DataType::U8>(input_size); // Resize tensor | ||
for (uint32_t i = 0; i < input_size; ++i) | ||
{ | ||
node->at<loco::DataType::U8>(i) = std::min(kMaxScale, std::max(kMinScale, quantized_values[i])); | ||
} | ||
} | ||
|
||
void asymmetric_wdequant_per_channel(CircleConst *node, std::vector<float> &scaling_factor, | ||
std::vector<float> &nudged_min) | ||
{ | ||
assert(node->dtype() == loco::DataType::U8); | ||
uint32_t size = node->size<loco::DataType::U8>(); | ||
std::vector<float> dequantized_values(size); | ||
|
||
auto dequantize = [&](uint32_t *indices, loco::TensorShape &dimension, int index_channel_dim) { | ||
int idx_channel = indices[index_channel_dim]; | ||
auto data = node->at<loco::DataType::U8>(cal_offset(dimension, indices)); | ||
dequantized_values[cal_offset(dimension, indices)] = | ||
static_cast<float>(data) * scaling_factor[idx_channel] + nudged_min[idx_channel]; | ||
}; | ||
|
||
iterate_per_channel(node, dequantize); | ||
|
||
node->dtype(loco::DataType::FLOAT32); // change the type of tensor | ||
node->size<loco::DataType::FLOAT32>(size); // resize tensor | ||
for (uint32_t i = 0; i < size; ++i) | ||
{ | ||
node->at<loco::DataType::FLOAT32>(i) = dequantized_values[i]; | ||
} | ||
} | ||
|
||
/** | ||
* @brief QuantizeWeightsWithGPTQ quantizes and dequantizes tensors for weights uisng GPTQ algorithm | ||
* @details Compensate for the quantization error and update weights using Hessian matrix | ||
|
@@ -50,9 +267,40 @@ class QuantizeDequantizeWeightsWithGPTQ final : public luci::CircleNodeMutableVi | |
|
||
void fake_quantize(luci::CircleConst *weights) | ||
{ | ||
// To be implemented | ||
(void)weights; | ||
if (_granularity != luci::QuantizationGranularity::ChannelWise) | ||
{ | ||
throw std::invalid_argument("GPTQPass: Unsupported granularity"); | ||
} | ||
|
||
if (_output_type != loco::DataType::U4 && _output_type != loco::DataType::U8) | ||
{ | ||
throw std::runtime_error("GPTQPass: GPTQ quantization supports uint4/uint8"); | ||
} | ||
|
||
// Find min/max per channel | ||
std::vector<float> min; | ||
std::vector<float> max; | ||
|
||
cal_minmax_per_channel(weights, min, max); | ||
|
||
std::vector<float> nudged_min(min.size()); | ||
std::vector<float> nudged_max(min.size()); | ||
std::vector<float> scaling_factor(min.size()); | ||
std::vector<int64_t> zp(min.size()); | ||
|
||
asymmetric_wquant_per_channel(weights, min, max, scaling_factor, zp, nudged_min, nudged_max, | ||
_output_type); | ||
asymmetric_wdequant_per_channel(weights, scaling_factor, nudged_min); | ||
|
||
auto quantparam = std::make_unique<CircleQuantParam>(); | ||
quantparam->min = nudged_min; | ||
quantparam->max = nudged_max; | ||
quantparam->scale = scaling_factor; | ||
quantparam->zerop = zp; | ||
|
||
weights->quantparam(std::move(quantparam)); | ||
} | ||
|
||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. move this format change to another PR |
||
void fake_quantize_with_gptq(luci::CircleConst *weights, std::vector<float> &hessian) | ||
{ | ||
// To be implemented | ||
|
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.