-
Notifications
You must be signed in to change notification settings - Fork 159
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[onert-micro] Add GRU backward execution #13757
Merged
chunseoklee
merged 1 commit into
Samsung:master
from
BalyshevArtem:second_gru_training_pr
Aug 28, 2024
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
187 changes: 187 additions & 0 deletions
187
onert-micro/onert-micro/include/pal/common/PALGRUWeightGrad.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H | ||
#define ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H | ||
|
||
#include "OMStatus.h" | ||
#include "core/OMRuntimeShape.h" | ||
#include "core/OMKernelType.h" | ||
|
||
#include "PALUtils.h" | ||
#include "ProcessBroadcastShapes.h" | ||
#include "PALFullyConnectedWeightGrad.h" | ||
|
||
namespace onert_micro | ||
{ | ||
namespace train | ||
{ | ||
namespace pal | ||
{ | ||
namespace | ||
{ | ||
|
||
void calculateGRUWeightGrads( | ||
const float *output_grad_data, const float *weight_input_data, float *weight_input_grad_data, | ||
const float *weight_hidden_data, float *weight_hidden_grad_data, const float *bias_input_data, | ||
float *bias_input_grad_data, const float *bias_hidden_data, float *bias_hidden_grad_data, | ||
const float *input_data, float *input_grad_data, float *state_grad_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_fc_shape, | ||
const core::OMRuntimeShape &output_shape, const core::OMRuntimeShape &weight_input_shape, | ||
const core::OMRuntimeShape &weight_hidden_shape, float *output_data, float *left_logistic_data, | ||
float *left_mul_data, float *right_logistic_data, const float *right_mul_left_input_data, | ||
const float *right_mul_right_input_data, float *tanh_data, const float *middle_mul_left_input, | ||
const float *middle_mul_right_input, float *left_fc_output_grad_buffer, | ||
float *right_fc_output_grad_buffer) | ||
{ | ||
int num_elements = output_shape.flatSize(); | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
// Middle Mul left input grad | ||
float left_middle_mul = output_grad_data[i]; | ||
left_middle_mul *= middle_mul_right_input[i]; | ||
|
||
// Middle Mul right input grad | ||
float right_middle_mul = output_grad_data[i]; | ||
right_middle_mul *= middle_mul_left_input[i]; | ||
|
||
// Tanh` = 1 / (cos(x) ^ 2) | ||
float tanh_grad_value; | ||
{ | ||
float tanh = std::tanh(tanh_data[i]); | ||
tanh_grad_value = (1 - tanh * tanh) * right_middle_mul; | ||
} | ||
|
||
// Left mul | ||
float left_mul_grad_value = output_grad_data[i] * output_data[i]; | ||
|
||
// Sub` = -1 | ||
// Left Logistic: Logistic` = (exp(-x) * (1 / (1 + exp(-x))) ^ 2) | ||
float left_logistic_grad_value; | ||
{ | ||
float log_value = (1 / (1 + std::exp(-left_logistic_data[i]))); | ||
left_logistic_grad_value = | ||
log_value * (1 - log_value) * (left_middle_mul + left_mul_grad_value); | ||
} | ||
|
||
// Right mul left input | ||
float right_mul_left_input = tanh_grad_value; | ||
right_mul_left_input *= right_mul_right_input_data[i]; | ||
|
||
// Right mul right input | ||
float right_mul_right_input = tanh_grad_value; | ||
right_mul_right_input *= right_mul_left_input_data[i]; | ||
|
||
// Right logistic | ||
float right_logistic_grad_value; | ||
{ | ||
float log_value = (1 / (1 + std::exp(-right_logistic_data[i]))); | ||
right_logistic_grad_value = log_value * (1 - log_value) * right_mul_left_input; | ||
} | ||
|
||
// Left concatenation | ||
left_fc_output_grad_buffer[i] = left_logistic_grad_value; | ||
left_fc_output_grad_buffer[i + num_elements] = right_logistic_grad_value; | ||
left_fc_output_grad_buffer[i + 2 * num_elements] = right_mul_right_input; | ||
|
||
// Right concatenation | ||
right_fc_output_grad_buffer[i] = left_logistic_grad_value; | ||
right_fc_output_grad_buffer[i + num_elements] = right_logistic_grad_value; | ||
right_fc_output_grad_buffer[i + 2 * num_elements] = tanh_grad_value; | ||
} | ||
|
||
// Left fc weight grad | ||
FullyConnectedWeightGrad(left_fc_output_grad_buffer, output_fc_shape, output_data, output_shape, | ||
weight_input_grad_data, weight_input_shape, | ||
core::OpTrainableRankType::ALL); | ||
// Right fc weight grad | ||
FullyConnectedWeightGrad(right_fc_output_grad_buffer, output_fc_shape, input_data, input_shape, | ||
weight_hidden_grad_data, weight_hidden_shape, | ||
core::OpTrainableRankType::ALL); | ||
|
||
// Set state grad to zero | ||
std::memset(state_grad_data, 0, output_shape.flatSize() * sizeof(float)); | ||
} | ||
|
||
} // namespace | ||
|
||
OMStatus GRUWeightGrads( | ||
const float *output_grad_data, const float *weight_input_data, float *weight_input_grad_data, | ||
const float *weight_hidden_data, float *weight_hidden_grad_data, const float *bias_input_data, | ||
float *bias_input_grad_data, const float *bias_hidden_data, float *bias_hidden_grad_data, | ||
const float *input_data, float *input_grad_data, float *state_grad_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_shape, | ||
const core::OMRuntimeShape &weight_input_shape, const core::OMRuntimeShape &weight_hidden_shape, | ||
const core::OMRuntimeShape &output_shape_fc, float *intermediate_buffer, | ||
float *left_fc_output_grad_buffer, float *right_fc_output_grad_buffer) | ||
{ | ||
const int32_t time = input_shape.dims(0); | ||
|
||
// Init pointers to intermediate values | ||
size_t offset = output_shape.flatSize(); | ||
|
||
size_t data_type_size = sizeof(float); | ||
const int32_t num_of_intermediate_tensors = 9; | ||
size_t time_offset = num_of_intermediate_tensors * offset; | ||
|
||
core::OMRuntimeShape two_dim_input_shape(2); | ||
auto dim_count = input_shape.dimensionsCount(); | ||
if (dim_count < 2) | ||
return UnsupportedType; | ||
two_dim_input_shape.setDim(0, input_shape.dims(dim_count - 2)); | ||
two_dim_input_shape.setDim(1, input_shape.dims(dim_count - 1)); | ||
|
||
core::OMRuntimeShape two_dim_output_shape(2); | ||
dim_count = output_shape.dimensionsCount(); | ||
if (dim_count < 2) | ||
return UnsupportedType; | ||
two_dim_output_shape.setDim(0, output_shape.dims(dim_count - 2)); | ||
two_dim_output_shape.setDim(1, output_shape.dims(dim_count - 1)); | ||
|
||
std::memset(weight_input_grad_data, 0, output_shape.flatSize() * sizeof(float) * time); | ||
std::memset(weight_hidden_grad_data, 0, input_shape.dims(2) * sizeof(float) * time); | ||
|
||
for (int i = 0; i < time; ++i) | ||
{ | ||
float *output_data = intermediate_buffer; | ||
float *left_logistic_data = output_data + offset; | ||
float *left_mul_data = left_logistic_data + offset; | ||
float *right_logistic_data = left_mul_data + offset; | ||
float *right_mul_left_input_data = right_logistic_data + offset; | ||
float *right_mul_right_input_data = right_mul_left_input_data + offset; | ||
float *tanh_data = right_mul_right_input_data + offset; | ||
float *middle_mul_left_input = tanh_data + offset; | ||
float *middle_mul_right_input = middle_mul_left_input + offset; | ||
|
||
calculateGRUWeightGrads( | ||
output_grad_data, weight_input_data, weight_input_grad_data, weight_hidden_data, | ||
weight_hidden_grad_data, bias_input_data, bias_input_grad_data, bias_hidden_data, | ||
bias_hidden_grad_data, input_data, input_grad_data, state_grad_data, two_dim_input_shape, | ||
output_shape_fc, two_dim_output_shape, weight_input_shape, weight_hidden_shape, output_data, | ||
left_logistic_data, left_mul_data, right_logistic_data, right_mul_left_input_data, | ||
right_mul_right_input_data, tanh_data, middle_mul_left_input, middle_mul_right_input, | ||
left_fc_output_grad_buffer, right_fc_output_grad_buffer); | ||
input_data += input_shape.dims(2); | ||
intermediate_buffer += time_offset; | ||
} | ||
return Ok; | ||
} | ||
|
||
} // namespace pal | ||
} // namespace train | ||
} // namespace onert_micro | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We also need to introduce these changes to tests for target board