Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[onert-micro] Add Softmax training kernel #13231

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions onert-micro/onert-micro/include/pal/common/PALSoftmaxInputGrad.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef ONERT_MICRO_EXECUTE_PAL_COMMON_SOFTMAX_INPUT_GRAD_H
#define ONERT_MICRO_EXECUTE_PAL_COMMON_SOFTMAX_INPUT_GRAD_H

#include "OMStatus.h"
#include "PALUtils.h"

#include <cmath>

namespace onert_micro
{
namespace train
{
namespace pal
{

void inline SoftmaxInputGrad(const float *dloss_doutput_data,
const core::OMRuntimeShape &dloss_doutput_shape,
const float *calculated_data, float *jacobian_row_data,
float *dloss_dinput_data)
{
assert(dloss_doutput_shape.dimensionsCount() == 2);
assert(dloss_doutput_shape.dims(0) == 1);
const uint32_t output_dim = dloss_doutput_shape.dims(dloss_doutput_shape.dimensionsCount() - 1);
for (int i = 0; i < output_dim; ++i)
{
for (int j = 0; j < output_dim; ++j)
{
jacobian_row_data[j] = -calculated_data[i] * calculated_data[j];
}
jacobian_row_data[i] += calculated_data[i];
float total = 0.f;
for (int j = 0; j < output_dim; ++j)
{
total += jacobian_row_data[j] * dloss_doutput_data[j];
}
dloss_dinput_data[i] = total;
}
}

} // namespace pal
} // namespace train
} // namespace onert_micro

#endif // ONERT_MICRO_EXECUTE_PAL_COMMON_SOFTMAX_INPUT_GRAD_H
118 changes: 118 additions & 0 deletions onert-micro/onert-micro/src/train/kernels/Softmax.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "OMStatus.h"
#include "core/OMUtils.h"
#include "core/OMDataType.h"
#include "train/OMBackpropExecutionBuilder.h"
#include "execute/OMRuntimeKernel.h"
#include "core/memory/OMMemoryManager.h"
#include "PALSoftmaxInputGrad.h"

using namespace onert_micro;
using namespace onert_micro::core;
using namespace onert_micro::train;

namespace
{

constexpr uint32_t inputTensorIdx = 0;
constexpr uint32_t outputTensorIdx = 0;

} // namespace

/*
* - Calculate input gradient - Optional (not required if it is last op)
*/
OMStatus onert_micro::train::train_kernel_CircleSoftmax(const OMBackpropExecuteArgs &args)
{
// Check is it last layer for training
if (args.is_last_layer)
{
return Ok;
}

core::OMRuntimeStorage &forward_storage = args.forward_storage;
core::OMRuntimeStorage &backward_storage = args.backward_storage;
core::OMRuntimeContext &context = args.backward_context;
uint16_t op_index = args.kernel_index;

const circle::Tensor *input;
const circle::Tensor *output;

uint8_t *dloss_dinput_data;

uint8_t *output_data;
uint8_t *dloss_doutput_data;

// Read kernel
{
execute::OMRuntimeKernel runtime_kernel;
runtime_kernel.readKernel(op_index, context);

input = runtime_kernel.inputs[inputTensorIdx];
output = runtime_kernel.outputs[outputTensorIdx];
assert(input != nullptr);
assert(output != nullptr);

// Read forward storage
{
runtime_kernel.getDataFromStorage(op_index, forward_storage, context);

output_data = runtime_kernel.outputs_data[outputTensorIdx];
assert(output_data != nullptr);
}

// Read backward storage
{
runtime_kernel.getDataFromStorage(op_index, backward_storage, context);

dloss_dinput_data = runtime_kernel.inputs_data[inputTensorIdx];
dloss_doutput_data = runtime_kernel.outputs_data[outputTensorIdx];

assert(dloss_dinput_data != nullptr);
assert(dloss_doutput_data != nullptr);
}
}

OMRuntimeShape input_shape(input);
OMRuntimeShape output_shape(output);

// Check Softmax output and input shape
assert(output_shape.dimensionsCount() == 2);
assert(output_shape.dims(0) == 1);
if (output_shape.dimensionsCount() != 2 or output_shape.dims(0) != 1)
return UnsupportedType;

// Allocate temporary buffer to save Jacobian row
uint8_t *jacobian_row_data = nullptr;
OMStatus status = core::memory::OMMemoryManager::allocateMemory(
output_shape.flatSize() * sizeof(OMDataType(output->type())), &jacobian_row_data);
assert(status == Ok);
if (status != Ok)
return status;

// Calculate input grad
pal::SoftmaxInputGrad(core::utils::castInputData<float>(dloss_doutput_data), output_shape,
core::utils::castInputData<float>(output_data),
core::utils::castOutputData<float>(jacobian_row_data),
core::utils::castOutputData<float>(dloss_dinput_data));

// Deallocate temporary buffer with Jacobian row
status = core::memory::OMMemoryManager::deallocateMemory(jacobian_row_data);

return status;
}
Loading