Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cker/train] Introduce Pad op in train #12522

Merged
merged 5 commits into from
Jan 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions compute/cker/include/cker/Types.h
Original file line number Diff line number Diff line change
Expand Up @@ -397,6 +397,12 @@ struct LeakyReluParams
float alpha;
};

struct PadParams
{
int32_t data[8];
int32_t rank;
};
Comment on lines +400 to +404
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍

It would be good to use this param in cpu backend too.


enum class Order
{
kColMajor,
Expand Down
168 changes: 168 additions & 0 deletions compute/cker/include/cker/train/operation/Pad.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef __NNFW_CKER_TRAIN_OPERATION_PAD_H__
#define __NNFW_CKER_TRAIN_OPERATION_PAD_H__

#include "cker/operation/Pad.h"

namespace nnfw
{
namespace cker
{
namespace train
{

/*
* input_data will be transformed by PAD operation with padding options(such as constant C) to
* output_data
*
* input_data -> output_data
* [0,1] -> [C,C,C,C]
* [2,3] -> [C,0,1,C]
* -> [C,2,3,C]
* -> [C,C,C,C]
*/
/*
* input_data(backward_output_data) will be transformed by backward of PAD operation (Depad) with
* padding options to output_data(backward_input_data)
*
* input_data(backward_output_data) -> output_data(backward_input_data)
* [C,C,C,C] -> [0,1]
* [C,0,1,C] -> [2,3]
* [C,2,3,C] ->
* [C,C,C,C] ->
*/
template <typename T>
inline void Depad(const int32_t *padding_data, int32_t pad_rank, const Shape &input_shape,
const T *input_data, const Shape &output_shape, T *output_data)
{
using PaddingInfo = std::pair<int32_t, int32_t>;
using PaddingList = std::vector<PaddingInfo>;

assert(output_shape.DimensionsCount() == input_shape.DimensionsCount());
assert(output_shape.DimensionsCount() == pad_rank);

PaddingList padding_list(pad_rank);
for (int32_t n = 0; n < pad_rank; ++n)
{
const int32_t *from = padding_data + (n * 2);
assert(from[0] >= 0 && from[1] >= 0);
padding_list[n] = {from[0], from[1]};
}
for (int32_t i = 0; i < pad_rank; ++i)
{
assert(output_shape.Dims(i) ==
input_shape.Dims(i) - padding_list[i].first - padding_list[i].second);
}

// logical axis: row -> col -> plain -> cube
switch (pad_rank)
{
case 0:
case 1:
{
const int32_t out_row_len = output_shape.Dims(0);
const int32_t padding_left = padding_list[0].first;
std::memcpy(output_data, input_data + padding_left, out_row_len * sizeof(T));
break;
}
case 2: // HW
{
const int32_t out_col_len = output_shape.Dims(0);
const int32_t out_row_len = output_shape.Dims(1);
const int32_t in_row_len = input_shape.Dims(1);
const int32_t padding_top = padding_list[0].first;
const int32_t padding_left = padding_list[1].first;
for (auto i = 0; i < out_col_len; ++i)
{
const auto in_offset = (i + padding_top) * in_row_len + padding_left;
const auto out_offset = i * out_row_len;
// copy a row of input data to output data
std::memcpy(output_data + out_offset, input_data + in_offset, out_row_len * sizeof(T));
}
break;
}
case 3: // HWC
{
const int32_t out_plain_len = output_shape.Dims(0);
const int32_t out_col_len = output_shape.Dims(1);
const int32_t out_row_len = output_shape.Dims(2);
const int32_t out_plain_size = out_col_len * out_row_len;
const int32_t in_col_len = input_shape.Dims(1);
const int32_t in_row_len = input_shape.Dims(2);
const int32_t in_plain_size = in_col_len * in_row_len;
const int32_t padding_depth = padding_list[0].first;
const int32_t padding_top = padding_list[1].first;
const int32_t padding_left = padding_list[2].first;
for (auto d = 0; d < out_plain_len; ++d)
{
for (auto h = 0; h < out_col_len; ++h)
{
const auto in_offset =
(d + padding_depth) * in_plain_size + (h + padding_top) * in_row_len + (padding_left);
const auto out_offset = (d * out_plain_size) + (h * out_row_len);
// copy a row of input data to output data
std::memcpy(output_data + out_offset, input_data + in_offset, out_row_len * sizeof(T));
}
}
break;
}
case 4: // NHWC
{
const int32_t out_cube_len = output_shape.Dims(0);
const int32_t out_plain_len = output_shape.Dims(1);
const int32_t out_col_len = output_shape.Dims(2);
const int32_t out_row_len = output_shape.Dims(3);
const int32_t out_plain_size = out_col_len * out_row_len;
const int32_t out_cube_size = out_plain_len * out_plain_size;
const int32_t in_plain_len = input_shape.Dims(1);
const int32_t in_col_len = input_shape.Dims(2);
const int32_t in_row_len = input_shape.Dims(3);
const int32_t in_plain_size = in_col_len * in_row_len;
const int32_t in_cube_size = in_plain_len * in_plain_size;
const int32_t padding_cube = padding_list[0].first;
const int32_t padding_depth = padding_list[1].first;
const int32_t padding_top = padding_list[2].first;
const int32_t padding_left = padding_list[3].first;
for (auto c = 0; c < out_cube_len; ++c)
{
for (auto d = 0; d < out_plain_len; ++d)
{
for (auto h = 0; h < out_col_len; ++h)
{
const auto in_offset = (c + padding_cube) * in_cube_size +
(d + padding_depth) * in_plain_size +
(h + padding_top) * in_row_len + (padding_left);
const auto out_offset = (c * out_cube_size) + (d * out_plain_size) + (h * out_row_len);
// copy a row of input data to output data
std::memcpy(output_data + out_offset, input_data + in_offset, out_row_len * sizeof(T));
}
}
}
break;
}
default:
throw std::runtime_error("Padding for rank > 4 NYI");
break;
}
}

} // namespace train
} // namespace cker
} // namespace nnfw

#endif // __NNFW_CKER_TRAIN_OPERATION_PAD_H__
Loading
Loading