-
Notifications
You must be signed in to change notification settings - Fork 159
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft: [onert] support ReLU6 training #12395
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,51 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef __NNFW_CKER_TRAIN_OPERATION_RELU6_H__ | ||
#define __NNFW_CKER_TRAIN_OPERATION_RELU6_H__ | ||
|
||
#include "cker/Shape.h" | ||
#include "cker/eigen/Utils.h" | ||
#include <Eigen/Core> | ||
|
||
namespace nnfw | ||
{ | ||
namespace cker | ||
{ | ||
namespace train | ||
{ | ||
|
||
inline void ReLU6Grad(const Shape &output_shape, const float *output_data, | ||
const Shape &incoming_shape, const float *incoming_data, | ||
const Shape &grad_shape, float *grad_data) | ||
{ | ||
const auto output_map = MapAsVector(output_data, output_shape); | ||
const auto incoming_map = MapAsVector(incoming_data, incoming_shape); | ||
auto grad_map = MapAsVector(grad_data, grad_shape); | ||
|
||
if (output_shape == incoming_shape && output_shape == grad_shape) | ||
grad_map.array() = | ||
incoming_map.array() * | ||
(0.0f < output_map.array() && output_map.array() < 6.0f).template cast<float>(); | ||
else | ||
throw std::runtime_error("cker::ReLUGrad: Unsupported shape"); | ||
} | ||
|
||
} // namespace train | ||
} // namespace cker | ||
} // namespace nnfw | ||
|
||
#endif // __NNFW_CKER_TRAIN_OPERATION_RELU6_H__ |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cker/operation/ReLU6.h> | ||
#include <cker/train/operation/ReLU6.h> | ||
|
||
#include <gtest/gtest.h> | ||
#include <gtest/gtest-spi.h> | ||
#include <vector> | ||
|
||
namespace | ||
{ | ||
|
||
using namespace nnfw::cker; | ||
|
||
template <typename T> class Relu6OpVerifier | ||
{ | ||
public: | ||
void verifyForward(const std::vector<T> &input, const std::vector<T> &expected_output) | ||
{ | ||
assert(input.size() == expected_output.size()); | ||
|
||
std::vector<T> calc_output(input.size()); // calcuated output | ||
ReLU6(Shape{static_cast<int>(input.size())}, input.data(), calc_output.data()); | ||
|
||
for (size_t i = 0; i < calc_output.size(); ++i) | ||
ASSERT_EQ(expected_output[i], calc_output[i]); | ||
} | ||
|
||
void verifyBackward(const std::vector<T> &output, const std::vector<T> &input_bwd, | ||
const std::vector<T> &expected_output_bwd, bool expect_eq = true) | ||
{ | ||
std::vector<T> calc_output_bwd(input_bwd.size()); // calculated output backward | ||
train::ReLU6Grad(Shape{static_cast<int>(output.size())}, output.data(), | ||
Shape{static_cast<int>(input_bwd.size())}, input_bwd.data(), | ||
Shape{static_cast<int>(calc_output_bwd.size())}, calc_output_bwd.data()); | ||
|
||
if (expect_eq) | ||
EXPECT_EQ(expected_output_bwd, calc_output_bwd); | ||
else | ||
EXPECT_NE(expected_output_bwd, calc_output_bwd); | ||
} | ||
}; | ||
|
||
} // namespace | ||
|
||
TEST(CKer_Operation, ReLU6) | ||
{ | ||
{ | ||
Relu6OpVerifier<float> verifier; | ||
|
||
// clang-format off | ||
// std::vector<float> input_fwd = {-2.0, -1.0, 2.0, 3.0, 6.0, 7.0}; | ||
std::vector<float> output_fwd = { 0.0, 0.0, 2.0, 3.0, 6.0, 7.0}; | ||
std::vector<float> input_bwd = {-0.1, -0.2, 0.3, 0.4, -0.1, 0.5}; | ||
std::vector<float> expected_output_bwd = { 0.0, 0.0, 0.3, 0.4, 0.0, 0.0}; | ||
// clang-format on | ||
|
||
verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd); | ||
} | ||
|
||
{ | ||
Relu6OpVerifier<float> verifier; | ||
|
||
// clang-format off | ||
// std::vector<float> input_fwd = { 7.0, 8.0, 4.0, -4.0, -5.0, 10.0}; | ||
std::vector<float> output_fwd = { 6.0, 6.0, 4.0, 0.0, 0.0, 6.0}; | ||
std::vector<float> input_bwd = {-6.1, -3.3, 7.0, 8.4, -9.2, 0.0}; | ||
std::vector<float> expected_output_bwd = { 0.0, 0.0, 7.0, 0.0, 0.0, 0.0}; | ||
// clang-format on | ||
|
||
verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd); | ||
} | ||
} | ||
|
||
TEST(CKer_Operation, neg_ReLU6) | ||
{ | ||
{ | ||
Relu6OpVerifier<float> verifier; | ||
|
||
// clang-format off | ||
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0}; | ||
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0}; | ||
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}; | ||
std::vector<float> expected_output_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}; // wrong value | ||
// clang-format on | ||
|
||
verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false); | ||
} | ||
|
||
{ | ||
Relu6OpVerifier<float> verifier; | ||
|
||
// clang-format off | ||
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0}; | ||
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0}; | ||
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4}; // size mismatch | ||
std::vector<float> expected_output_bwd = { 0.0, 0.2, 0.3, 0.4}; | ||
// clang-format on | ||
|
||
EXPECT_ANY_THROW(verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false)); | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "OperationUtils.h" | ||
|
||
#include <cker/train/operation/ReLU.h> | ||
#include <cker/train/operation/ReLU6.h> | ||
|
||
namespace onert | ||
{ | ||
namespace backend | ||
{ | ||
namespace train | ||
{ | ||
namespace ops | ||
{ | ||
|
||
const IPortableTensor *getFusedActivationBackprop(const ir::Activation &activation, | ||
const IPortableTensor *output, | ||
const IPortableTensor *input_backprop, | ||
IPortableTensor *output_backprop) | ||
{ | ||
const IPortableTensor *res; | ||
|
||
switch (activation) | ||
{ | ||
case ir::Activation::NONE: | ||
res = input_backprop; | ||
break; | ||
case ir::Activation::RELU: | ||
nnfw::cker::train::ReLUGrad(getShape(output), getBuffer<float>(output), | ||
getShape(input_backprop), getBuffer<float>(input_backprop), | ||
getShape(output_backprop), getBuffer<float>(output_backprop)); | ||
res = output_backprop; | ||
break; | ||
case ir::Activation::RELU6: | ||
nnfw::cker::train::ReLU6Grad(getShape(output), getBuffer<float>(output), | ||
getShape(input_backprop), getBuffer<float>(input_backprop), | ||
getShape(output_backprop), getBuffer<float>(output_backprop)); | ||
res = output_backprop; | ||
break; | ||
default: | ||
throw std::runtime_error("Unsupported activation type yet"); | ||
} | ||
|
||
return res; | ||
} | ||
Comment on lines
+31
to
+60
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. While I was supporting I'd like to extract fused activation's backpropagation part as OperationUtil to remove code duplication. But before going on, I'd like to hear your opinion. Do you think it is fine? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sorry for the late reply. Perhaps, I missed your comment. It looks good to me. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. No problem! |
||
|
||
} // namespace ops | ||
} // namespace train | ||
} // namespace backend | ||
} // namespace onert |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
(note)
array()
has no cost - it just change the view of data, for element-wise operationhttps://eigen.tuxfamily.org/dox/group__QuickRefPage.html#:~:text=Recall%20that%20.array()%20has%20no%20cost%2C%20it%20only%20changes%20the%20available%20API%20and%20interpretation%20of%20the%20data