Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft: [onert] support ReLU6 training #12395

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions compute/cker/include/cker/train/operation/ReLU6.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef __NNFW_CKER_TRAIN_OPERATION_RELU6_H__
#define __NNFW_CKER_TRAIN_OPERATION_RELU6_H__

#include "cker/Shape.h"
#include "cker/eigen/Utils.h"
#include <Eigen/Core>

namespace nnfw
{
namespace cker
{
namespace train
{

inline void ReLU6Grad(const Shape &output_shape, const float *output_data,
const Shape &incoming_shape, const float *incoming_data,
const Shape &grad_shape, float *grad_data)
{
const auto output_map = MapAsVector(output_data, output_shape);
const auto incoming_map = MapAsVector(incoming_data, incoming_shape);
auto grad_map = MapAsVector(grad_data, grad_shape);

if (output_shape == incoming_shape && output_shape == grad_shape)
grad_map.array() =
incoming_map.array() *
(0.0f < output_map.array() && output_map.array() < 6.0f).template cast<float>();
Comment on lines +40 to +42
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

else
throw std::runtime_error("cker::ReLUGrad: Unsupported shape");
}

} // namespace train
} // namespace cker
} // namespace nnfw

#endif // __NNFW_CKER_TRAIN_OPERATION_RELU6_H__
116 changes: 116 additions & 0 deletions compute/cker/src/train/Relu6.test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cker/operation/ReLU6.h>
#include <cker/train/operation/ReLU6.h>

#include <gtest/gtest.h>
#include <gtest/gtest-spi.h>
#include <vector>

namespace
{

using namespace nnfw::cker;

template <typename T> class Relu6OpVerifier
{
public:
void verifyForward(const std::vector<T> &input, const std::vector<T> &expected_output)
{
assert(input.size() == expected_output.size());

std::vector<T> calc_output(input.size()); // calcuated output
ReLU6(Shape{static_cast<int>(input.size())}, input.data(), calc_output.data());

for (size_t i = 0; i < calc_output.size(); ++i)
ASSERT_EQ(expected_output[i], calc_output[i]);
}

void verifyBackward(const std::vector<T> &output, const std::vector<T> &input_bwd,
const std::vector<T> &expected_output_bwd, bool expect_eq = true)
{
std::vector<T> calc_output_bwd(input_bwd.size()); // calculated output backward
train::ReLU6Grad(Shape{static_cast<int>(output.size())}, output.data(),
Shape{static_cast<int>(input_bwd.size())}, input_bwd.data(),
Shape{static_cast<int>(calc_output_bwd.size())}, calc_output_bwd.data());

if (expect_eq)
EXPECT_EQ(expected_output_bwd, calc_output_bwd);
else
EXPECT_NE(expected_output_bwd, calc_output_bwd);
}
};

} // namespace

TEST(CKer_Operation, ReLU6)
{
{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = {-2.0, -1.0, 2.0, 3.0, 6.0, 7.0};
std::vector<float> output_fwd = { 0.0, 0.0, 2.0, 3.0, 6.0, 7.0};
std::vector<float> input_bwd = {-0.1, -0.2, 0.3, 0.4, -0.1, 0.5};
std::vector<float> expected_output_bwd = { 0.0, 0.0, 0.3, 0.4, 0.0, 0.0};
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd);
}

{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 7.0, 8.0, 4.0, -4.0, -5.0, 10.0};
std::vector<float> output_fwd = { 6.0, 6.0, 4.0, 0.0, 0.0, 6.0};
std::vector<float> input_bwd = {-6.1, -3.3, 7.0, 8.4, -9.2, 0.0};
std::vector<float> expected_output_bwd = { 0.0, 0.0, 7.0, 0.0, 0.0, 0.0};
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd);
}
}

TEST(CKer_Operation, neg_ReLU6)
{
{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0};
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
std::vector<float> expected_output_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}; // wrong value
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false);
}

{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0};
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4}; // size mismatch
std::vector<float> expected_output_bwd = { 0.0, 0.2, 0.3, 0.4};
// clang-format on

EXPECT_ANY_THROW(verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false));
}
}
6 changes: 5 additions & 1 deletion runtime/onert/backend/train/ops/ConvolutionLayer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,10 @@ void ConvolutionLayer::backward()
void ConvolutionLayer::backwardFloat32()
{
// Calculate gradient for activation
const IPortableTensor *backprop_act = getFusedActivationBackprop(
_activation, _output, _back_prop_output, _act_back_prop_output.get());

/*
const IPortableTensor *backprop_act;
switch (_activation)
{
Expand All @@ -148,7 +152,7 @@ void ConvolutionLayer::backwardFloat32()
break;
default:
throw std::runtime_error("train ConvolutionLayer: Unsupported activation type yet");
}
}*/

// Initialize conv params for training kernels
nnfw::cker::ConvParams conv_train_params;
Expand Down
20 changes: 13 additions & 7 deletions runtime/onert/backend/train/ops/ElementwiseActivationLayer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
#include "OperationUtils.h"

#include <cker/train/operation/ReLU.h>
#include <cker/train/operation/ReLU6.h>

namespace onert
{
Expand Down Expand Up @@ -54,22 +55,27 @@ void ElementwiseActivationLayer::configure(const IPortableTensor *input, IPortab
case ElementwiseActivationType::kReLU:
if (input->data_type() == OperandType::FLOAT32)
{
if (alpha == std::numeric_limits<float>::infinity() && beta == 0.f)
// configure
if ((alpha == std::numeric_limits<float>::infinity() || alpha == 6.0f) && beta == 0.f)
{
cpu::ops::ElementwiseActivationLayer::configure(
input, output, alpha, beta, cpu::ops::ElementwiseActivationType::kReLU);

_backward_kernel = [](const IPortableTensor *output, const IPortableTensor *incoming,
IPortableTensor *outgoing) {
nnfw::cker::train::ReLUGrad(getShape(output), getBuffer<float>(output),
getShape(incoming), getBuffer<float>(incoming),
getShape(outgoing), getBuffer<float>(outgoing));
auto relu_cker = nnfw::cker::train::ReLUGrad;
if (alpha == 6.0)
relu_cker = nnfw::cker::train::ReLU6Grad;

_backward_kernel = [&relu_cker](const IPortableTensor *output,
const IPortableTensor *incoming,
IPortableTensor *outgoing) {
relu_cker(getShape(output), getBuffer<float>(output), getShape(incoming),
getBuffer<float>(incoming), getShape(outgoing), getBuffer<float>(outgoing));
};
}
else
{
throw std::runtime_error("train ElementwiseActivationLayer : This layer does not "
"suppport other ReLU except for ReLU(0-inf)");
"suppport other ReLU except for ReLU(0-inf) and ReLU6(0-6)");
}
}
else
Expand Down
6 changes: 6 additions & 0 deletions runtime/onert/backend/train/ops/FullyConnectedLayer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,11 @@ void FullyConnectedLayer::backward()
void FullyConnectedLayer::backwardFloat32()
{
// Calculate gradient for activation

const IPortableTensor *backprop_act = getFusedActivationBackprop(
_activation, _output, _back_prop_output, _act_back_prop_output.get());

/*
const IPortableTensor *backprop_act;
switch (_activation)
{
Expand All @@ -149,6 +154,7 @@ void FullyConnectedLayer::backwardFloat32()
default:
throw std::runtime_error("train FullyConnectedLayer: Unsupported activation type yet");
}
*/

// Initialize TransposeParams
nnfw::cker::TransposeParams transpose_param;
Expand Down
65 changes: 65 additions & 0 deletions runtime/onert/backend/train/ops/OperationUtils.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include "OperationUtils.h"

#include <cker/train/operation/ReLU.h>
#include <cker/train/operation/ReLU6.h>

namespace onert
{
namespace backend
{
namespace train
{
namespace ops
{

const IPortableTensor *getFusedActivationBackprop(const ir::Activation &activation,
const IPortableTensor *output,
const IPortableTensor *input_backprop,
IPortableTensor *output_backprop)
{
const IPortableTensor *res;

switch (activation)
{
case ir::Activation::NONE:
res = input_backprop;
break;
case ir::Activation::RELU:
nnfw::cker::train::ReLUGrad(getShape(output), getBuffer<float>(output),
getShape(input_backprop), getBuffer<float>(input_backprop),
getShape(output_backprop), getBuffer<float>(output_backprop));
res = output_backprop;
break;
case ir::Activation::RELU6:
nnfw::cker::train::ReLU6Grad(getShape(output), getBuffer<float>(output),
getShape(input_backprop), getBuffer<float>(input_backprop),
getShape(output_backprop), getBuffer<float>(output_backprop));
res = output_backprop;
break;
default:
throw std::runtime_error("Unsupported activation type yet");
}

return res;
}
Comment on lines +31 to +60
Copy link
Contributor Author

@zetwhite zetwhite Jan 2, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ragmani

While I was supporting relu6,
I found out that each layer(Convolution, FullyConnected and Pool for now) implements activation backpropagation on its own.

I'd like to extract fused activation's backpropagation part as OperationUtil to remove code duplication.

But before going on, I'd like to hear your opinion. Do you think it is fine?
( I'm a bit afraid that there's a reason it has the current implementation. )

Copy link
Contributor

@ragmani ragmani Jan 16, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry for the late reply. Perhaps, I missed your comment. It looks good to me.

Copy link
Contributor Author

@zetwhite zetwhite Jan 17, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No problem!
I didn't ask again, because it wasn't in a hurry.


} // namespace ops
} // namespace train
} // namespace backend
} // namespace onert
21 changes: 21 additions & 0 deletions runtime/onert/backend/train/ops/OperationUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,27 @@ using cpu::ops::getNumberOfDimensions;
using cpu::ops::getNumberOfElements;
using cpu::ops::getSizeOfDimension;

/**
* @brief calcuate fused acitvation back propagation
*
* -- forward direction -->
*
* [ current layer ] ---- [next layer ]
* [ op | act ]
*
* <-- backward direction --
*
* @param activation activation of current layer
* @param output forward direction's output of current layer
* @param input_backprop backward direction's from next layer, incoming gradient from next layer
* @param output_backprop backward direction's output of activation, outcoming gradient of
* acitvation
*/
const IPortableTensor *getFusedActivationBackprop(const ir::Activation &activation,
const IPortableTensor *output,
const IPortableTensor *input_backprop,
IPortableTensor *output_backprop);

} // namespace ops
} // namespace train
} // namespace backend
Expand Down
4 changes: 4 additions & 0 deletions runtime/onert/backend/train/ops/PoolLayer.cc
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,9 @@ class MaxPool2D final : public TrainingKernelRegistry
assert(back_prop_out->layout() == ir::Layout::NHWC);

// activation bacward
back_prop_out =
getFusedActivationBackprop(_activation, _output, back_prop_out, _act_back_prop_output.get());
/*
switch (_activation)
{
case ir::Activation::NONE:
Expand All @@ -118,6 +121,7 @@ class MaxPool2D final : public TrainingKernelRegistry
default:
throw std::runtime_error("PoolLayer: Unsupported activation type yet");
}
*/

// maxpool baackward
auto arg_max_index = _arg_max_index.get();
Expand Down