-
Notifications
You must be signed in to change notification settings - Fork 159
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert-micro] Support S8 and S16 FullyConnected (#13163)
This pr adds supporting of s8 and s16 + cmsis_nn. ONE-DCO-1.0-Signed-off-by: Artem Balyshev <[email protected]>
- Loading branch information
1 parent
1f33982
commit b734be3
Showing
8 changed files
with
578 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
#/*REGISTER_KERNEL(ABS, Abs)*/ | ||
#/*REGISTER_KERNEL(ADD, Add)*/ | ||
#/*REGISTER_KERNEL(ADD_N, AddN)*/ | ||
#/*REGISTER_KERNEL(AVERAGE_POOL_2D, AveragePool2D)*/ | ||
#/*REGISTER_KERNEL(ARG_MAX, ArgMax)*/ | ||
#/*REGISTER_KERNEL(ARG_MIN, ArgMin)*/ | ||
#/*REGISTER_KERNEL(CONCATENATION, Concatenation)*/ | ||
#/*REGISTER_KERNEL(CUSTOM, BroadcastTo)*/ | ||
#/*REGISTER_KERNEL(BATCH_TO_SPACE_ND, BatchToSpaceND)*/ | ||
#/*REGISTER_KERNEL(CEIL, Ceil)*/ | ||
#/*REGISTER_KERNEL(COS, Cos)*/ | ||
#/*REGISTER_KERNEL(CAST, Cast)*/ | ||
#/*REGISTER_KERNEL(DIV, Div)*/ | ||
#/*REGISTER_KERNEL(DEPTHWISE_CONV_2D, DepthwiseConv2D)*/ | ||
#/*REGISTER_KERNEL(DEPTH_TO_SPACE, DepthToSpace)*/ | ||
#/*REGISTER_KERNEL(DEQUANTIZE, Dequantize)*/ | ||
REGISTER_KERNEL(FULLY_CONNECTED, FullyConnected) | ||
#/*REGISTER_KERNEL(CONV_2D, Conv2D)*/ | ||
#/*REGISTER_KERNEL(LOGISTIC, Logistic)*/ | ||
#/*REGISTER_KERNEL(LOG, Log)*/ | ||
#/*REGISTER_KERNEL(GATHER, Gather)*/ | ||
#/*REGISTER_KERNEL(GATHER_ND, GatherND)*/ | ||
#/*REGISTER_KERNEL(EXP, Exp)*/ | ||
#/*REGISTER_KERNEL(GREATER, Greater)*/ | ||
#/*REGISTER_KERNEL(GREATER_EQUAL, GreaterEqual)*/ | ||
#/*REGISTER_KERNEL(EXPAND_DIMS, ExpandDims)*/ | ||
#/*REGISTER_KERNEL(ELU, Elu)*/ | ||
#/*REGISTER_KERNEL(EQUAL, Equal)*/ | ||
#/*REGISTER_KERNEL(FILL, Fill)*/ | ||
#/*REGISTER_KERNEL(FLOOR, Floor)*/ | ||
#/*REGISTER_KERNEL(FLOOR_DIV, FloorDiv)*/ | ||
#/*REGISTER_KERNEL(FLOOR_MOD, FloorMod)*/ | ||
#/*REGISTER_KERNEL(PACK, Pack)*/ | ||
#/*REGISTER_KERNEL(PAD, Pad)*/ | ||
#/*REGISTER_KERNEL(PADV2, PadV2)*/ | ||
#/*REGISTER_KERNEL(PRELU, PRelu)*/ | ||
#/*REGISTER_KERNEL(RESHAPE, Reshape)*/ | ||
#/*REGISTER_KERNEL(RELU, Relu)*/ | ||
#/*REGISTER_KERNEL(RELU6, Relu6)*/ | ||
#/*REGISTER_KERNEL(REDUCE_PROD, ReduceCommon)*/ | ||
#/*REGISTER_KERNEL(REDUCE_MAX, ReduceMax)*/ | ||
#/*REGISTER_KERNEL(ROUND, Round)*/ | ||
#/*REGISTER_KERNEL(LESS, Less)*/ | ||
#/*REGISTER_KERNEL(L2_NORMALIZATION, L2Normalize)*/ | ||
#/*REGISTER_KERNEL(L2_POOL_2D, L2Pool2D)*/ | ||
#/*REGISTER_KERNEL(LESS_EQUAL, LessEqual)*/ | ||
#/*REGISTER_KERNEL(LOGICAL_AND, LogicalAnd)*/ | ||
#/*REGISTER_KERNEL(LOGICAL_NOT, LogicalNot)*/ | ||
#/*REGISTER_KERNEL(LOGICAL_OR, LogicalOr)*/ | ||
#/*REGISTER_KERNEL(LEAKY_RELU, LeakyRelu)*/ | ||
#/*REGISTER_KERNEL(LOG_SOFTMAX, LogSoftmax)*/ | ||
#/*REGISTER_KERNEL(MUL, Mul)*/ | ||
#/*REGISTER_KERNEL(MIRROR_PAD, MirrorPad)*/ | ||
#/*REGISTER_KERNEL(MAXIMUM, Maximum)*/ | ||
#/*REGISTER_KERNEL(MEAN, Mean)*/ | ||
#/*REGISTER_KERNEL(MAX_POOL_2D, MaxPool2D)*/ | ||
#/*REGISTER_KERNEL(MINIMUM, Minimum)*/ | ||
#/*REGISTER_KERNEL(SHAPE, Shape)*/ | ||
#/*REGISTER_KERNEL(NOT_EQUAL, NotEqual)*/ | ||
#/*REGISTER_KERNEL(SIN, Sin)*/ | ||
#/*REGISTER_KERNEL(SQUARED_DIFFERENCE, SquaredDifference)*/ | ||
#/*REGISTER_KERNEL(SLICE, Slice)*/ | ||
#/*REGISTER_KERNEL(SUB, Sub)*/ | ||
#/*REGISTER_KERNEL(SPLIT, Split)*/ | ||
#/*REGISTER_KERNEL(SPACE_TO_BATCH_ND, SpaceToBatchND)*/ | ||
#/*REGISTER_KERNEL(STRIDED_SLICE, StridedSlice)*/ | ||
#/*REGISTER_KERNEL(SPLIT_V, SplitV)*/ | ||
#/*REGISTER_KERNEL(SQUARE, Square)*/ | ||
#/*REGISTER_KERNEL(SQRT, Sqrt)*/ | ||
#/*REGISTER_KERNEL(SPACE_TO_DEPTH, SpaceToDepth)*/ | ||
#/*REGISTER_KERNEL(QUANTIZE, Quantize)*/ | ||
#/*REGISTER_KERNEL(TANH, Tanh)*/ | ||
#/*REGISTER_KERNEL(TRANSPOSE, Transpose)*/ | ||
#/*REGISTER_KERNEL(TRANSPOSE_CONV, TransposeConv)*/ | ||
#/*REGISTER_KERNEL(SOFTMAX, Softmax)*/ | ||
#/*REGISTER_KERNEL(SUM, Sum)*/ | ||
#/*REGISTER_KERNEL(SELECT_V2, SelectV2)*/ | ||
#/*REGISTER_KERNEL(SVDF, SVDF)*/ | ||
#/*REGISTER_KERNEL(WHILE, While)*/ | ||
#/*REGISTER_KERNEL(UNIDIRECTIONAL_SEQUENCE_LSTM, UnidirectionalSequenceLSTM)*/ | ||
#/*REGISTER_KERNEL(RESIZE_BILINEAR, ResizeBilinear)*/ | ||
#/*REGISTER_KERNEL(RESIZE_NEAREST_NEIGHBOR, ResizeNearestNeighbor)*/ | ||
#/*REGISTER_KERNEL(RSQRT, Rsqrt)*/ | ||
#/*REGISTER_KERNEL(NEG, Neg)*/ | ||
#/*REGISTER_KERNEL(ZEROS_LIKE, ZerosLike)*/ | ||
#/*REGISTER_KERNEL(SQUEEZE, Squeeze)*/ | ||
#/*REGISTER_KERNEL(UNPACK, Unpack)*/ |
168 changes: 168 additions & 0 deletions
168
onert-micro/onert-micro/include/pal/cmsisnn/PALFullyConnected.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_FULLY_CONNECTED_H | ||
#define ONERT_MICRO_EXECUTE_PAL_FULLY_CONNECTED_H | ||
|
||
#include "PALFullyConnectedCommon.h" | ||
|
||
#include <arm_nnfunctions.h> | ||
|
||
namespace onert_micro | ||
{ | ||
namespace execute | ||
{ | ||
namespace pal | ||
{ | ||
template <> | ||
OMStatus FullyConnected<int8_t>(const core::FullyConnectedParams ¶ms, const int8_t *input_data, | ||
const core::OMRuntimeShape &filter_shape, const int8_t *filter_data, | ||
const int32_t *bias_data, const core::OMRuntimeShape &output_shape, | ||
int8_t *output_data) | ||
{ | ||
const int filter_dim_count = filter_shape.dimensionsCount(); | ||
const int output_dim_count = output_shape.dimensionsCount(); | ||
const int batches = | ||
flatSizeSkipDim(output_shape.dimsData(), output_dim_count - 1, output_dim_count); | ||
const int output_depth = output_shape.dims(output_dim_count - 1); | ||
const int accum_depth = filter_shape.dims(filter_dim_count - 1); | ||
|
||
cmsis_nn_fc_params fc_params; | ||
fc_params.input_offset = params.input_offset; | ||
fc_params.output_offset = params.output_offset; | ||
fc_params.filter_offset = params.weights_offset; | ||
fc_params.activation.min = params.quantized_activation_min; | ||
fc_params.activation.max = params.quantized_activation_max; | ||
|
||
cmsis_nn_per_tensor_quant_params quant_params; | ||
quant_params.multiplier = params.output_multiplier; | ||
quant_params.shift = params.output_shift; | ||
|
||
cmsis_nn_dims input_dims; | ||
input_dims.n = batches; | ||
input_dims.h = 1; | ||
input_dims.w = 1; | ||
input_dims.c = accum_depth; | ||
|
||
cmsis_nn_dims filter_dims; | ||
filter_dims.n = accum_depth; | ||
filter_dims.h = 1; | ||
filter_dims.w = 1; | ||
filter_dims.c = output_depth; | ||
|
||
cmsis_nn_dims bias_dims; | ||
bias_dims.n = 1; | ||
bias_dims.h = 1; | ||
bias_dims.w = 1; | ||
bias_dims.c = output_depth; | ||
|
||
cmsis_nn_dims output_dims; | ||
output_dims.n = batches; | ||
output_dims.h = 1; | ||
output_dims.w = 1; | ||
output_dims.c = output_depth; | ||
|
||
int32_t buf_size = arm_fully_connected_s8_get_buffer_size(&filter_dims); | ||
auto buffer = std::make_unique<int8_t[]>(buf_size); | ||
assert(buffer != nullptr); | ||
|
||
cmsis_nn_context ctx; | ||
ctx.buf = buffer.get(); | ||
ctx.size = buf_size; | ||
|
||
auto res = | ||
arm_fully_connected_s8(&ctx, &fc_params, &quant_params, &input_dims, input_data, &filter_dims, | ||
filter_data, &bias_dims, bias_data, &output_dims, output_data); | ||
assert(res == ARM_CMSIS_NN_SUCCESS); | ||
if (res != ARM_CMSIS_NN_SUCCESS) | ||
return CmsisNNError; | ||
|
||
return Ok; | ||
} | ||
|
||
template <> | ||
OMStatus FullyConnected(const core::FullyConnectedParams ¶ms, const int16_t *input_data, | ||
const core::OMRuntimeShape &filter_shape, const int8_t *filter_data, | ||
const int64_t *bias_data, const core::OMRuntimeShape &output_shape, | ||
int16_t *output_data) | ||
{ | ||
const int filter_dim_count = filter_shape.dimensionsCount(); | ||
const int output_dim_count = output_shape.dimensionsCount(); | ||
const int batches = | ||
flatSizeSkipDim(output_shape.dimsData(), output_dim_count - 1, output_dim_count); | ||
const int output_depth = output_shape.dims(output_dim_count - 1); | ||
const int accum_depth = filter_shape.dims(filter_dim_count - 1); | ||
|
||
cmsis_nn_fc_params fc_params; | ||
fc_params.input_offset = params.input_offset; | ||
fc_params.output_offset = params.output_offset; | ||
fc_params.filter_offset = params.weights_offset; | ||
fc_params.activation.min = params.quantized_activation_min; | ||
fc_params.activation.max = params.quantized_activation_max; | ||
|
||
cmsis_nn_per_tensor_quant_params quant_params; | ||
quant_params.multiplier = params.output_multiplier; | ||
quant_params.shift = params.output_shift; | ||
|
||
cmsis_nn_dims input_dims; | ||
input_dims.n = batches; | ||
input_dims.h = 1; | ||
input_dims.w = 1; | ||
input_dims.c = accum_depth; | ||
|
||
cmsis_nn_dims filter_dims; | ||
filter_dims.n = accum_depth; | ||
filter_dims.h = 1; | ||
filter_dims.w = 1; | ||
filter_dims.c = output_depth; | ||
|
||
cmsis_nn_dims bias_dims; | ||
bias_dims.n = 1; | ||
bias_dims.h = 1; | ||
bias_dims.w = 1; | ||
bias_dims.c = output_depth; | ||
|
||
cmsis_nn_dims output_dims; | ||
output_dims.n = batches; | ||
output_dims.h = 1; | ||
output_dims.w = 1; | ||
output_dims.c = output_depth; | ||
|
||
int32_t buf_size = arm_fully_connected_s16_get_buffer_size(&filter_dims); | ||
auto buffer = std::make_unique<int8_t[]>(buf_size); | ||
assert(buffer != nullptr); | ||
|
||
cmsis_nn_context ctx; | ||
ctx.buf = buffer.get(); | ||
ctx.size = buf_size; | ||
|
||
auto res = | ||
arm_fully_connected_s16(&ctx, &fc_params, &quant_params, &input_dims, input_data, &filter_dims, | ||
filter_data, &bias_dims, bias_data, &output_dims, output_data); | ||
assert(res == ARM_CMSIS_NN_SUCCESS); | ||
|
||
if (res != ARM_CMSIS_NN_SUCCESS) | ||
return CmsisNNError; | ||
|
||
return Ok; | ||
} | ||
|
||
} // namespace pal | ||
} // namespace execute | ||
} // namespace onert_micro | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_FULLY_CONNECTED_COMMON_H |
Oops, something went wrong.