-
Notifications
You must be signed in to change notification settings - Fork 159
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert] Add unit tests for training Reshape op
This commit adds some tests to validate training of Reshape op. ONE-DCO-1.0-Signed-off-by: ragmani <[email protected]>
- Loading branch information
Showing
1 changed file
with
106 additions
and
0 deletions.
There are no files selected for viewing
106 changes: 106 additions & 0 deletions
106
tests/nnfw_api/src/GenModelTests/nontrainable_op_trains/Reshape.test.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include "GenModelTrain.h" | ||
|
||
#include <memory> | ||
|
||
TEST_F(GenModelTrain, NonTrainableOps_FC_Reshape) | ||
{ | ||
CirclePlusGen cgen; | ||
|
||
uint32_t weight_buf = cgen.addBuffer(std::vector<float>(2 * 3 * 3, 0.f)); | ||
uint32_t bias_buf = cgen.addBuffer(std::vector<float>(2, 0.f)); | ||
const auto new_shape = CircleGen::Shape{1, 18}; | ||
uint32_t shape_buf = cgen.addBuffer(std::vector<int32_t>(new_shape)); | ||
int input = cgen.addTensor({{1, 5, 5, 1}, circle::TensorType::TensorType_FLOAT32}); | ||
int weight = cgen.addTensor({{2, 3, 3, 1}, circle::TensorType::TensorType_FLOAT32, weight_buf}); | ||
int bias = cgen.addTensor({{2}, circle::TensorType::TensorType_FLOAT32, bias_buf}); | ||
int conv_output = cgen.addTensor({{1, 3, 3, 2}, circle::TensorType::TensorType_FLOAT32}); | ||
int shape = cgen.addTensor({{2}, circle::TensorType::TensorType_INT32, shape_buf}); | ||
int output = cgen.addTensor({{1, 18}, circle::TensorType::TensorType_FLOAT32}); | ||
cgen.addOperatorConv2D({{input, weight, bias}, {conv_output}}, circle::Padding_VALID, 1, 1, | ||
circle::ActivationFunctionType_NONE, 1, 1); | ||
cgen.addOperatorReshape({{conv_output, shape}, {output}}, &new_shape); | ||
cgen.setInputsAndOutputs({input}, {output}); | ||
|
||
float learning_rate = 0.01f; | ||
int32_t batch_size = 1; | ||
cgen.addTrainInfo({circle::Optimizer::Optimizer_SGD, learning_rate, | ||
circle::LossFn::LossFn_MEAN_SQUARED_ERROR, | ||
circle::LossReductionType::LossReductionType_SumOverBatchSize, batch_size}); | ||
|
||
_context = std::make_unique<GenModelTrainContext>(cgen.finish()); | ||
_context->addTrainCase( | ||
uniformTCD<float>({{{4, 0, -5, 1, 0, 4, -1, 1, -1, -3, 3, -2, -4, | ||
1, -2, 2, 4, -4, 2, 2, 0, 4, -1, -2, 4}}}, // input dataset | ||
{{{47, -4, -25, 9, 10, 10, -13, 11, -14, -26, -12, 26, 20, 40, 1, 3, 11, | ||
4}}}, // expected dataset | ||
{226.5260f} // last losses | ||
)); | ||
|
||
_context->setBackends({"train"}); | ||
// To apply backward to loss, epoch should be >= 2 | ||
_context->setEpoch(4); | ||
|
||
SUCCEED(); | ||
} | ||
|
||
TEST_F(GenModelTrain, neg_NonTrainableOps_Reshape_InvalidShape) | ||
{ | ||
CirclePlusGen cgen; | ||
|
||
uint32_t shape_buf = cgen.addBuffer(std::vector<float>{2, 3}); | ||
int input = cgen.addTensor({{1, 4}, circle::TensorType::TensorType_FLOAT32}); | ||
int shape = cgen.addTensor({{2}, circle::TensorType::TensorType_INT32, shape_buf}); | ||
// Invalid shape: The number of output elements should be equal to input | ||
int output = cgen.addTensor({{2, 3}, circle::TensorType::TensorType_FLOAT32}); | ||
cgen.addOperatorReshape({{input, shape}, {output}}); | ||
cgen.setInputsAndOutputs({input}, {output}); | ||
|
||
float learning_rate = 0.01f; | ||
int32_t batch_size = 1; | ||
cgen.addTrainInfo({circle::Optimizer::Optimizer_SGD, learning_rate, | ||
circle::LossFn::LossFn_MEAN_SQUARED_ERROR, | ||
circle::LossReductionType::LossReductionType_SumOverBatchSize, batch_size}); | ||
|
||
_context = std::make_unique<GenModelTrainContext>(cgen.finish()); | ||
_context->setBackends({"train"}); | ||
_context->expectFailCompile(); | ||
} | ||
|
||
TEST_F(GenModelTrain, neg_NonTrainableOps_Reshape_InvalidType) | ||
{ | ||
CirclePlusGen cgen; | ||
|
||
uint32_t shape_buf = cgen.addBuffer(std::vector<float>{2, 2}); | ||
// Invalid type: input tensor type should be FLOAT32 | ||
int input = cgen.addTensor({{1, 4}, circle::TensorType::TensorType_INT32}); | ||
int shape = cgen.addTensor({{2}, circle::TensorType::TensorType_INT32, shape_buf}); | ||
int output = cgen.addTensor({{2, 2}, circle::TensorType::TensorType_FLOAT32}); | ||
cgen.addOperatorReshape({{input, shape}, {output}}); | ||
cgen.setInputsAndOutputs({input}, {output}); | ||
|
||
float learning_rate = 0.01f; | ||
int32_t batch_size = 1; | ||
cgen.addTrainInfo({circle::Optimizer::Optimizer_SGD, learning_rate, | ||
circle::LossFn::LossFn_MEAN_SQUARED_ERROR, | ||
circle::LossReductionType::LossReductionType_SumOverBatchSize, batch_size}); | ||
|
||
_context = std::make_unique<GenModelTrainContext>(cgen.finish()); | ||
_context->setBackends({"train"}); | ||
_context->expectFailCompile(); | ||
} |