-
Notifications
You must be signed in to change notification settings - Fork 159
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert-micro] Add GRU backward execution (#13757)
This pr adds GRU backward execution. ONE-DCO-1.0-Signed-off-by: Artem Balyshev <[email protected] Co-authored-by: Artem Balyshev <[email protected]>
- Loading branch information
1 parent
36c4001
commit 523d27b
Showing
10 changed files
with
472 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
187 changes: 187 additions & 0 deletions
187
onert-micro/onert-micro/include/pal/common/PALGRUWeightGrad.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H | ||
#define ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H | ||
|
||
#include "OMStatus.h" | ||
#include "core/OMRuntimeShape.h" | ||
#include "core/OMKernelType.h" | ||
|
||
#include "PALUtils.h" | ||
#include "ProcessBroadcastShapes.h" | ||
#include "PALFullyConnectedWeightGrad.h" | ||
|
||
namespace onert_micro | ||
{ | ||
namespace train | ||
{ | ||
namespace pal | ||
{ | ||
namespace | ||
{ | ||
|
||
void calculateGRUWeightGrads( | ||
const float *output_grad_data, const float *weight_input_data, float *weight_input_grad_data, | ||
const float *weight_hidden_data, float *weight_hidden_grad_data, const float *bias_input_data, | ||
float *bias_input_grad_data, const float *bias_hidden_data, float *bias_hidden_grad_data, | ||
const float *input_data, float *input_grad_data, float *state_grad_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_fc_shape, | ||
const core::OMRuntimeShape &output_shape, const core::OMRuntimeShape &weight_input_shape, | ||
const core::OMRuntimeShape &weight_hidden_shape, float *output_data, float *left_logistic_data, | ||
float *left_mul_data, float *right_logistic_data, const float *right_mul_left_input_data, | ||
const float *right_mul_right_input_data, float *tanh_data, const float *middle_mul_left_input, | ||
const float *middle_mul_right_input, float *left_fc_output_grad_buffer, | ||
float *right_fc_output_grad_buffer) | ||
{ | ||
int num_elements = output_shape.flatSize(); | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
// Middle Mul left input grad | ||
float left_middle_mul = output_grad_data[i]; | ||
left_middle_mul *= middle_mul_right_input[i]; | ||
|
||
// Middle Mul right input grad | ||
float right_middle_mul = output_grad_data[i]; | ||
right_middle_mul *= middle_mul_left_input[i]; | ||
|
||
// Tanh` = 1 / (cos(x) ^ 2) | ||
float tanh_grad_value; | ||
{ | ||
float tanh = std::tanh(tanh_data[i]); | ||
tanh_grad_value = (1 - tanh * tanh) * right_middle_mul; | ||
} | ||
|
||
// Left mul | ||
float left_mul_grad_value = output_grad_data[i] * output_data[i]; | ||
|
||
// Sub` = -1 | ||
// Left Logistic: Logistic` = (exp(-x) * (1 / (1 + exp(-x))) ^ 2) | ||
float left_logistic_grad_value; | ||
{ | ||
float log_value = (1 / (1 + std::exp(-left_logistic_data[i]))); | ||
left_logistic_grad_value = | ||
log_value * (1 - log_value) * (left_middle_mul + left_mul_grad_value); | ||
} | ||
|
||
// Right mul left input | ||
float right_mul_left_input = tanh_grad_value; | ||
right_mul_left_input *= right_mul_right_input_data[i]; | ||
|
||
// Right mul right input | ||
float right_mul_right_input = tanh_grad_value; | ||
right_mul_right_input *= right_mul_left_input_data[i]; | ||
|
||
// Right logistic | ||
float right_logistic_grad_value; | ||
{ | ||
float log_value = (1 / (1 + std::exp(-right_logistic_data[i]))); | ||
right_logistic_grad_value = log_value * (1 - log_value) * right_mul_left_input; | ||
} | ||
|
||
// Left concatenation | ||
left_fc_output_grad_buffer[i] = left_logistic_grad_value; | ||
left_fc_output_grad_buffer[i + num_elements] = right_logistic_grad_value; | ||
left_fc_output_grad_buffer[i + 2 * num_elements] = right_mul_right_input; | ||
|
||
// Right concatenation | ||
right_fc_output_grad_buffer[i] = left_logistic_grad_value; | ||
right_fc_output_grad_buffer[i + num_elements] = right_logistic_grad_value; | ||
right_fc_output_grad_buffer[i + 2 * num_elements] = tanh_grad_value; | ||
} | ||
|
||
// Left fc weight grad | ||
FullyConnectedWeightGrad(left_fc_output_grad_buffer, output_fc_shape, output_data, output_shape, | ||
weight_input_grad_data, weight_input_shape, | ||
core::OpTrainableRankType::ALL); | ||
// Right fc weight grad | ||
FullyConnectedWeightGrad(right_fc_output_grad_buffer, output_fc_shape, input_data, input_shape, | ||
weight_hidden_grad_data, weight_hidden_shape, | ||
core::OpTrainableRankType::ALL); | ||
|
||
// Set state grad to zero | ||
std::memset(state_grad_data, 0, output_shape.flatSize() * sizeof(float)); | ||
} | ||
|
||
} // namespace | ||
|
||
OMStatus GRUWeightGrads( | ||
const float *output_grad_data, const float *weight_input_data, float *weight_input_grad_data, | ||
const float *weight_hidden_data, float *weight_hidden_grad_data, const float *bias_input_data, | ||
float *bias_input_grad_data, const float *bias_hidden_data, float *bias_hidden_grad_data, | ||
const float *input_data, float *input_grad_data, float *state_grad_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_shape, | ||
const core::OMRuntimeShape &weight_input_shape, const core::OMRuntimeShape &weight_hidden_shape, | ||
const core::OMRuntimeShape &output_shape_fc, float *intermediate_buffer, | ||
float *left_fc_output_grad_buffer, float *right_fc_output_grad_buffer) | ||
{ | ||
const int32_t time = input_shape.dims(0); | ||
|
||
// Init pointers to intermediate values | ||
size_t offset = output_shape.flatSize(); | ||
|
||
size_t data_type_size = sizeof(float); | ||
const int32_t num_of_intermediate_tensors = 9; | ||
size_t time_offset = num_of_intermediate_tensors * offset; | ||
|
||
core::OMRuntimeShape two_dim_input_shape(2); | ||
auto dim_count = input_shape.dimensionsCount(); | ||
if (dim_count < 2) | ||
return UnsupportedType; | ||
two_dim_input_shape.setDim(0, input_shape.dims(dim_count - 2)); | ||
two_dim_input_shape.setDim(1, input_shape.dims(dim_count - 1)); | ||
|
||
core::OMRuntimeShape two_dim_output_shape(2); | ||
dim_count = output_shape.dimensionsCount(); | ||
if (dim_count < 2) | ||
return UnsupportedType; | ||
two_dim_output_shape.setDim(0, output_shape.dims(dim_count - 2)); | ||
two_dim_output_shape.setDim(1, output_shape.dims(dim_count - 1)); | ||
|
||
std::memset(weight_input_grad_data, 0, output_shape.flatSize() * sizeof(float) * time); | ||
std::memset(weight_hidden_grad_data, 0, input_shape.dims(2) * sizeof(float) * time); | ||
|
||
for (int i = 0; i < time; ++i) | ||
{ | ||
float *output_data = intermediate_buffer; | ||
float *left_logistic_data = output_data + offset; | ||
float *left_mul_data = left_logistic_data + offset; | ||
float *right_logistic_data = left_mul_data + offset; | ||
float *right_mul_left_input_data = right_logistic_data + offset; | ||
float *right_mul_right_input_data = right_mul_left_input_data + offset; | ||
float *tanh_data = right_mul_right_input_data + offset; | ||
float *middle_mul_left_input = tanh_data + offset; | ||
float *middle_mul_right_input = middle_mul_left_input + offset; | ||
|
||
calculateGRUWeightGrads( | ||
output_grad_data, weight_input_data, weight_input_grad_data, weight_hidden_data, | ||
weight_hidden_grad_data, bias_input_data, bias_input_grad_data, bias_hidden_data, | ||
bias_hidden_grad_data, input_data, input_grad_data, state_grad_data, two_dim_input_shape, | ||
output_shape_fc, two_dim_output_shape, weight_input_shape, weight_hidden_shape, output_data, | ||
left_logistic_data, left_mul_data, right_logistic_data, right_mul_left_input_data, | ||
right_mul_right_input_data, tanh_data, middle_mul_left_input, middle_mul_right_input, | ||
left_fc_output_grad_buffer, right_fc_output_grad_buffer); | ||
input_data += input_shape.dims(2); | ||
intermediate_buffer += time_offset; | ||
} | ||
return Ok; | ||
} | ||
|
||
} // namespace pal | ||
} // namespace train | ||
} // namespace onert_micro | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_GRU_WEIGHT_GRAD_COMMON_H |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.