-
Notifications
You must be signed in to change notification settings - Fork 159
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[onert-micro] Add GRU forward execution (#13746)
This pr adds GRU forward execution. ONE-DCO-1.0-Signed-off-by: Artem Balyshev <[email protected]
- Loading branch information
1 parent
0d4cf4c
commit 4540b0c
Showing
21 changed files
with
854 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
209 changes: 209 additions & 0 deletions
209
onert-micro/onert-micro/include/pal/common/PALGRUCommon.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,209 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_GRU_COMMON_H | ||
#define ONERT_MICRO_EXECUTE_PAL_GRU_COMMON_H | ||
|
||
#include "OMStatus.h" | ||
#include "core/OMRuntimeShape.h" | ||
|
||
#include "PALUtils.h" | ||
#include "ProcessBroadcastShapes.h" | ||
#include "PALFullyConnected.h" | ||
#include "PALLogistic.h" | ||
|
||
namespace onert_micro | ||
{ | ||
namespace execute | ||
{ | ||
namespace pal | ||
{ | ||
namespace | ||
{ | ||
void calculateGRU(const float *input_data, const float *weight_input_data, | ||
const float *weight_hidden_data, const float *bias_input_data, | ||
const float *bias_hidden_data, float *output_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_shape, | ||
const core::OMRuntimeShape &weight_input_shape, | ||
const core::OMRuntimeShape &weight_hidden_shape, float *output_input_data, | ||
float *output_hidden_data, const core::OMRuntimeShape &output_shape_fc, | ||
float *intermediate_buffer) | ||
{ | ||
core::FullyConnectedParams op_params{}; | ||
// As FC nodes doesn't have any activations inside GRU, let' use just numeric limits | ||
op_params.float_activation_min = std::numeric_limits<float>::lowest(); | ||
op_params.float_activation_max = std::numeric_limits<float>::max(); | ||
// If intermediate_buffer != nullptr - then it is train mode and we need save intermediate inform | ||
bool is_train_mode = intermediate_buffer != nullptr; | ||
if (is_train_mode) | ||
{ | ||
// Copy input for FC Input to calculate weights gradients | ||
std::memcpy(intermediate_buffer, output_data, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
// FC Input | ||
FullyConnected(op_params, output_data, weight_input_shape, weight_input_data, bias_input_data, | ||
output_shape_fc, output_input_data); | ||
|
||
// FC Hidden | ||
// Note: input for this FC node will be saved without intermediate buffer | ||
FullyConnected(op_params, input_data, weight_hidden_shape, weight_hidden_data, bias_hidden_data, | ||
output_shape_fc, output_hidden_data); | ||
|
||
int num_elements = output_shape_fc.dims(1) / 3; | ||
|
||
float *second_hidden_part = output_hidden_data + num_elements; | ||
float *second_input_part = output_input_data + num_elements; | ||
|
||
float *third_hidden_part = second_hidden_part + num_elements; | ||
float *third_input_part = second_input_part + num_elements; | ||
|
||
// Calculate Left part | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
output_input_data[i] += output_hidden_data[i]; | ||
} | ||
|
||
// If train mode - save logistic input | ||
if (is_train_mode) | ||
{ | ||
std::memcpy(intermediate_buffer, output_input_data, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
Logistic(num_elements, output_input_data, output_input_data); | ||
|
||
// If train mode - save most left mul input (right input) | ||
if (is_train_mode) | ||
{ | ||
std::memcpy(intermediate_buffer, output_input_data, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
// Calculate most left mul | ||
float *most_left_part_final = output_input_data; | ||
float *first_part = output_input_data; | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
output_data[i] *= most_left_part_final[i]; | ||
first_part[i] = 1.0f - first_part[i]; | ||
} | ||
|
||
// Calc second part | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
second_hidden_part[i] += second_input_part[i]; | ||
} | ||
// If train mode - save logistic input | ||
if (is_train_mode) | ||
{ | ||
std::memcpy(intermediate_buffer, second_hidden_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
Logistic(num_elements, second_hidden_part, second_hidden_part); | ||
|
||
// If train mode - save mul input (left and right) | ||
if (is_train_mode) | ||
{ | ||
// Left input | ||
std::memcpy(intermediate_buffer, second_hidden_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
|
||
// Right input | ||
std::memcpy(intermediate_buffer, third_input_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
second_hidden_part[i] *= third_input_part[i]; | ||
second_hidden_part[i] += third_hidden_part[i]; | ||
} | ||
// If train mode - save tanh input | ||
if (is_train_mode) | ||
{ | ||
std::memcpy(intermediate_buffer, second_hidden_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
second_hidden_part[i] = std::tanh(second_hidden_part[i]); | ||
} | ||
|
||
// If train mode - save mul input (left and right) | ||
if (is_train_mode) | ||
{ | ||
// Left input | ||
std::memcpy(intermediate_buffer, first_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
|
||
// Right input | ||
std::memcpy(intermediate_buffer, second_hidden_part, output_shape.flatSize() * sizeof(float)); | ||
// Move intermediate_buffer pointer | ||
intermediate_buffer += output_shape.flatSize(); | ||
} | ||
for (int i = 0; i < num_elements; ++i) | ||
{ | ||
second_hidden_part[i] *= first_part[i]; | ||
output_data[i] += second_hidden_part[i]; | ||
} | ||
} | ||
|
||
} // namespace | ||
|
||
OMStatus GRU(const float *input_data, const float *weight_input_data, | ||
const float *weight_hidden_data, const float *bias_input_data, | ||
const float *bias_hidden_data, const float *hidden_state_data, float *output_data, | ||
float *output_input_data, float *output_hidden_data, | ||
const core::OMRuntimeShape &input_shape, const core::OMRuntimeShape &output_shape, | ||
const core::OMRuntimeShape &weight_input_shape, | ||
const core::OMRuntimeShape &weight_hidden_shape, const size_t intermediate_buffer_size, | ||
float *intermediate_buffer) | ||
{ | ||
const int32_t time = input_shape.dims(0); | ||
|
||
core::OMRuntimeShape output_shape_fc(2); | ||
output_shape_fc.setDim(0, 1); | ||
output_shape_fc.setDim(1, weight_hidden_shape.dims(0)); | ||
|
||
std::memcpy(output_data, hidden_state_data, output_shape.flatSize() * sizeof(float)); | ||
|
||
for (int i = 0; i < time; ++i) | ||
{ | ||
calculateGRU(input_data, weight_input_data, weight_hidden_data, bias_input_data, | ||
bias_hidden_data, output_data, input_shape, output_shape, weight_input_shape, | ||
weight_hidden_shape, output_input_data, output_hidden_data, output_shape_fc, | ||
intermediate_buffer); | ||
input_data += input_shape.dims(2); | ||
if (intermediate_buffer_size != 0) | ||
{ | ||
assert(intermediate_buffer != nullptr); | ||
intermediate_buffer += intermediate_buffer_size; | ||
} | ||
} | ||
return Ok; | ||
} | ||
|
||
} // namespace pal | ||
} // namespace execute | ||
} // namespace onert_micro | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_GRU_COMMON_H |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* | ||
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved | ||
* Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#ifndef ONERT_MICRO_EXECUTE_PAL_GRU_H | ||
#define ONERT_MICRO_EXECUTE_PAL_GRU_H | ||
|
||
#include "PALGRUCommon.h" | ||
|
||
#endif // ONERT_MICRO_EXECUTE_PAL_GRU_H |
Oops, something went wrong.