forked from mutalibcs/Digital-Signal-Processing
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 04f9906
Showing
7 changed files
with
1,323 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"id": "fxLfsY4tTvRQ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[ 2 4 7 13 19 13 17 15]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"x = [1,2,3,4,5]\n", | ||
"h = [2,0,1,3]\n", | ||
"N = len(x)+len(h)-1\n", | ||
"y = np.convolve(x,h,'full')\n", | ||
"print(y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"id": "gsj-v0wAVjny" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# DFT\n", | ||
"def DFT(x,N):\n", | ||
" X = np.zeros(N,dtype = 'complex_')\n", | ||
" for k in range(N):\n", | ||
" for n in range(N):\n", | ||
" X[k] = X[k] + x[n]*np.exp(-1j*2*np.pi*k*n/N)\n", | ||
" return X" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# DFT\n", | ||
"def DFT(x,N):\n", | ||
" X = np.zeros(N, dtype='complex_')\n", | ||
" for k in range(N):\n", | ||
" for n in range(N):\n", | ||
" X[k] = X[k]+ x[n]*np.exp(-1j*2*np.pi*k*n/N)\n", | ||
" return X" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": { | ||
"id": "lWSyGo2mShqY" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# IDFT\n", | ||
"def IDFT(X, N):\n", | ||
" y = np.zeros(N,dtype = 'complex_')\n", | ||
" for n in range(N):\n", | ||
" for k in range(N):\n", | ||
" y[n] = y[n] + X[k]*np.exp(1j*2*np.pi*k*n/N)\n", | ||
" \n", | ||
" return y/N" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# IDFT\n", | ||
"def IDFT(X,N):\n", | ||
" y = np.zeros(N, dtype='complex_')\n", | ||
" for n in range(N):\n", | ||
" for k in range(N):\n", | ||
" y[n] = y[n]+X[k]*np.exp(1j*2*np.pi*k*n/N)\n", | ||
" return y/N" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "yooDiI98VsRf", | ||
"outputId": "f6893dba-4ac7-4294-d9f6-cf2f0341f4c1" | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[ 2. 4. 7. 13. 19. 13. 17. 15.]\n", | ||
"[ 9.00000000e+01+0.00000000e+00j -2.19497475e+01+1.77781746e+01j\n", | ||
" -3.00000000e+00+1.10000000e+01j -1.20502525e+01-2.22182541e+00j\n", | ||
" 1.25979822e-30-2.57175828e-15j -1.20502525e+01+2.22182541e+00j\n", | ||
" -3.00000000e+00-1.10000000e+01j -2.19497475e+01-1.77781746e+01j]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"x = np.pad(x, (0, N-len(x)), 'constant')\n", | ||
"h = np.pad(h, (0, N-len(h)), 'constant')\n", | ||
"X = DFT(x,N)\n", | ||
"H = DFT(h,N)\n", | ||
"Y = X*H\n", | ||
"y = np.real(IDFT(Y,N))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[ 2. 4. 7. 13. 19. 13. 17. 15.]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"x = np.pad(x,(0,N-len(x)),'constant')\n", | ||
"h = np.pad(h, (0,N-len(h)),'constant')\n", | ||
"X = DFT(x,N)\n", | ||
"H = DFT(h,N)\n", | ||
"Y = X*H\n", | ||
"y = np.real(IDFT(Y,N))\n", | ||
"print(y)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "6a749398", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "f8f59a71", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[4 2 3]\n", | ||
" [2 4 8]\n", | ||
" [0 9 0]\n", | ||
" [5 1 2]\n", | ||
" [7 2 3]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"N = 15\n", | ||
"L = 5\n", | ||
"M = 3\n", | ||
"x = np.array([4,2,0,5,7,2,4,9,1,2,3,8,0,2,3])\n", | ||
"np.shape(x)\n", | ||
"y = x.reshape(L,M, order='F')\n", | ||
"print(y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7fb2cb10", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "222ce56e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# DFT\n", | ||
"def DFT(x,N):\n", | ||
" X = np.zeros(N,dtype = 'complex_')\n", | ||
" for k in range(N):\n", | ||
" for n in range(N):\n", | ||
" X[k] = X[k] + x[n]*np.exp(-1j*2*np.pi*k*n/N)\n", | ||
" return X" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "4bf3e133", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"(5, 3)\n", | ||
"[9. +0.j 1.5+0.8660254j 1.5-0.8660254j]\n", | ||
"[14.+0.j -4.+3.46410162j -4.-3.46410162j]\n", | ||
"[ 9. +0.j -4.5-7.79422863j -4.5+7.79422863j]\n", | ||
"[8. +0.j 3.5+0.8660254j 3.5-0.8660254j]\n", | ||
"[12. +0.j 4.5+0.8660254j 4.5-0.8660254j]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"F = np.zeros((L,M),dtype = 'complex_')\n", | ||
"print(np.shape(F))\n", | ||
"for l in range(L):\n", | ||
" F[l] = DFT(y[l,:],M) #row\n", | ||
" #np.shape(F)\n", | ||
" print(F[l])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "37f26696", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[[ 9. +0.j 1.5 +0.8660254j 1.5 -0.8660254j ]\n", | ||
" [14. +0.j -2.24520477+4.79156087j -5.25085162+0.65464289j]\n", | ||
" [ 9. +0.j -8.80332841-1.87120522j 8.22190912+3.66062979j]\n", | ||
" [ 8. +0.j 1.90519858-3.06108124j -3.34059644-1.35661911j]\n", | ||
" [12. +0.j 0.39090314-4.56587283j -4.2216074 +1.78270328j]]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"G = np.zeros((L,M),dtype = 'complex_')\n", | ||
"for l in range(L):\n", | ||
" for q in range(M):\n", | ||
" G[l,q] = F[l,q] * np.exp(-1j*2*np.pi*l*q/N)\n", | ||
"print(G)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "971059df", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[52. 8.20656829 4.95715437 4.11892682 21.16279549 8.54400375\n", | ||
" 6.7848686 10.82658508 10.82658508 6.7848686 8.54400375 21.16279549\n", | ||
" 4.11892682 4.95715437 8.20656829]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"X = np.zeros((L,M),dtype = 'complex_')\n", | ||
"for m in range(M):\n", | ||
" X[:,m] = DFT(G[:,m],L) #column\n", | ||
"#print(abs(X))\n", | ||
"Y = X.reshape(N,)\n", | ||
"print(abs(Y))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "b563a847", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[52. 8.20656829 4.95715437 4.11892682 21.16279549 8.54400375\n", | ||
" 6.7848686 10.82658508 10.82658508 6.7848686 8.54400375 21.16279549\n", | ||
" 4.11892682 4.95715437 8.20656829]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(abs(np.fft.fft(x,N)))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "53bef6ec", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.