-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCG_MSCI_GCN.py
403 lines (337 loc) · 16.7 KB
/
CG_MSCI_GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import pandas as pd
df_descrp = pd.read_csv("./wiki_data/wiki_graph_data_2hop_description.csv")
import sys
frac_data = float(sys.argv[1])
measure = str(sys.argv[2])
# print(measure)
# run_time = int(sys.argv[2])
################################new section classification
import warnings
warnings.filterwarnings("ignore")
from torch_geometric.data import Data
import torch
import pandas as pd
from tqdm import tqdm
tqdm.pandas()
import nltk
from nltk.stem import PorterStemmer
porter = PorterStemmer()
from nltk.corpus import wordnet
nltk.download('omw-1.4')
import numpy as np
# from sklearn.model_selection import train_test_split
import torch.nn.functional as F
from torch_geometric.nn import GCNConv
from sklearn.metrics import f1_score
import pickle
import numpy as np
from numpy import mean
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from imblearn.pipeline import Pipeline
from imblearn.ensemble import BalancedRandomForestClassifier
from imblearn.over_sampling import RandomOverSampler
# import argparse
# parser = argparse.ArgumentParser()
# parser.add_argument("--n", help="SDG K")
# args = parser.parse_args()
#
# number = int(args.n)
def get_category(x):
if x == "Strongly Misaligned":
return "Misaligned"
elif x == "Strongly Aligned":
return "Aligned"
else:
return x
import string
import re
import nltk
nltk.download('wordnet')
nltk.download('punkt')
def extract_statements(line):
try:
line = line.replace("|", " ")
line = line.replace("=", " ")
line = re.sub(r'^\s?\d+(.*)$', r'\1', line)
# removing trailing spaces
line = line.strip()
# words may be split between lines, ensure we link them back together
line = re.sub(r'\s?-\s?', '-', line)
# remove space prior to punctuation
line = re.sub(r'\s?([,:;\.])', r'\1', line)
# ESG contains a lot of figures that are not relevant to grammatical structure
line = re.sub(r'\d{5,}', r' ', line)
# remove mentions of URLs
line = re.sub(r'((http|https)\:\/\/)?[a-zA-Z0-9\.\/\?\:@\-_=#]+\.([a-zA-Z]){2,6}([a-zA-Z0-9\.\&\/\?\:@\-_=#])*', r' ', line)
# remove multiple spaces
line = re.sub(r'\s+', ' ', line)
# remove multiple dot
line = re.sub(r'\.+', '.', line)
sentences = []
# split paragraphs into well defined sentences using nltk
for part in nltk.sent_tokenize(line):
sentences.append(str(part).strip())
my_string = " ".join(sentences)
my_string = my_string.replace("_", " ")
new_string = my_string.translate(str.maketrans('', '', string.punctuation))
return new_string
except:
return None
def stem_sentences(x):
tokenized_words = x.split(" ")
tokenized_sentence = []
for word in tokenized_words:
if len(wordnet.synsets(word)) != 0:
tokenized_sentence.append(porter.stem(word))
tokenized_sentence = " ".join(tokenized_sentence)
return tokenized_sentence
# creating bag of words representations from description
# Create a Bag of Words Model with Sklearn
# import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
def get_BoW(df_wiki_node, column_name, param1=5, param2=.99):
corpus = df_wiki_node[column_name]
# sentence_1="*&^$This is a good job.{{I will not miss it for anything"
# sentence_2="This is not good at all}}, hello my name misses a w"
# CountVec = CountVectorizer(ngram_range=(1,2), # to use bigrams ngram_range=(2,2)
# stop_words='english')
CountVec = CountVectorizer(min_df=param1,max_df=param2, ngram_range=(1, 1), stop_words='english')
#transform
Count_data = CountVec.fit_transform(corpus.values.tolist())
#create dataframe
BoW_dataframe=pd.DataFrame(Count_data.toarray(),columns=CountVec.get_feature_names())
# print(BoW_dataframe)
return BoW_dataframe
import re
def find_category(x):
try:
return " ".join(re.findall(r'Category:([^\[\]]*)', x))
except:
return None
def convert_label_numeric(x):
if x == "Strongly Misaligned":
return 1
if x == "Misaligned":
return 2
if x == "Neutral":
return 3
if x == "Aligned":
return 4
if x == "Strongly Aligned":
return 5
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(data.x.shape[1], 16)
self.conv2 = GCNConv(16, len(data.y.unique()))
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
df_merge = pd.read_csv("./temp_data2/news_features.csv")
column_features = ['magnitude_sum', 'magnitude_mean', 'magnitude_std',
'magnitude_median', 'magnitude_var', 'magnitude_amin', 'magnitude_amax',
'magnitude_percentile_5', 'magnitude_percentile_95',
'magnitude_percentile_10', 'magnitude_percentile_90', 'score_sum',
'score_mean', 'score_std', 'score_median', 'score_var', 'score_amin',
'score_amax', 'score_percentile_5', 'score_percentile_95',
'score_percentile_10', 'score_percentile_90', 'numMentions_sum',
'numMentions_mean', 'numMentions_std', 'numMentions_median',
'numMentions_var', 'numMentions_amin', 'numMentions_amax',
'numMentions_percentile_5', 'numMentions_percentile_95',
'numMentions_percentile_10', 'numMentions_percentile_90',
'avgSalience_sum', 'avgSalience_mean', 'avgSalience_std',
'avgSalience_median', 'avgSalience_var', 'avgSalience_amin',
'avgSalience_amax', 'avgSalience_percentile_5',
'avgSalience_percentile_95', 'avgSalience_percentile_10',
'avgSalience_percentile_90', 'overall_score_sum', 'overall_score_mean',
'overall_score_std', 'overall_score_median', 'overall_score_var',
'overall_score_amin', 'overall_score_amax',
'overall_score_percentile_5', 'overall_score_percentile_95',
'overall_score_percentile_10', 'overall_score_percentile_90']
# import sys
# print(int(sys.argv[1]))
# number = int(sys.argv[1])
overall_all_scores = []
for i in range(3):
print("run time ", i)
all_scores = []
for number in range(1,18):
# try:
print("calculating SDG: ", number)
msci = pd.read_csv("./data/msci.csv")
msci2 = pd.read_csv("./data/msci2.csv").rename(columns={"SDG_03_OPS_ALIGNMENT":"SDG_03_OPER_ALIGNMENT"})
variable6 = "GICS Industry"
if number >= 10:
variable5 = "SDG_{}_NET_ALIGNMENT".format(number)
else:
variable5 = "SDG_0{}_NET_ALIGNMENT".format(number) # another thing
SDG1 = msci[["Company Name", "Company ID"]].dropna()
SDG2 = msci2[["ISSUER_NAME", "Figi", variable5]].dropna()
df_label = SDG1.merge(SDG2, left_on="Company ID", right_on="Figi")[["Company Name", variable5]]
df_label = df_label.rename(columns = {"Company Name": "company"})
df_sector = pd.read_csv("./data/Fundamental.csv")[["Company Name",variable6]].rename(columns={"Company Name": "company"})
df_merge2 = df_merge.merge(df_sector,on="company", how="right")
df_merge3 = df_merge2.merge(df_label, on="company", how="right")
df_merge3["concat_header_cleaned"] = df_merge3["concat_header_cleaned"].fillna("nothing")
df_merge3 = df_merge3.dropna(subset=[variable6,variable5])
df_merge3 = df_merge3.fillna(df_merge3.groupby(variable6).transform("mean"))
# added
df_wiki = pd.read_csv("./temp_data/wiki/wiki_product_info.csv",sep="\t")
df_wiki["product_info"] = df_wiki["product_info"].progress_apply(stem_sentences)
df_merge3 = df_merge3.merge(df_wiki[["company","product_info"]],on="company").dropna()
# added
df_entail = pd.read_csv("./temp_data/entail/entail_SDG_{}.csv".format(number),sep="\t")
df_entail["report_evidence"] = df_entail.groupby("company")["statement"].transform(lambda x: ','.join(x))
df_evidence = df_entail[["company","statement"]].drop_duplicates().rename(columns = {"statement":"report_evidence"})
df_merge3 = df_merge3.merge(df_evidence,on="company",how="left")
df_merge3["report_evidence"] = df_merge3["report_evidence"].fillna("nothing")
df_merge3["stem_product_info"] = df_merge3["product_info"].progress_apply(stem_sentences)
df_merge3["stem_report_evidence"] = df_merge3["report_evidence"].progress_apply(stem_sentences)
df_wiki_id = pd.read_csv("./wiki_data/wikidata.csv")
df_merge3 = df_merge3.merge(df_wiki_id[["company","wikidata_id"]], on="company", how="left").dropna()
df_graph = pd.read_csv("./wiki_data/wiki_graph_data_2hop_cleaned.csv")
# df_graph = df_graph[(df_graph.wikidata_id_start.isin(df_merge3.wikidata_id.values))|(df_graph.wikidata_id_end.isin(df_merge3.wikidata_id.values))]
df_wiki_node = pd.DataFrame()
df_wiki_node["wikidata_id"] = list(set(df_graph.wikidata_id_start.values.tolist()+df_graph.wikidata_id_end.values.tolist()))
df_wiki_node = df_wiki_node.merge(df_merge3,on="wikidata_id",how="left").drop_duplicates(subset=["wikidata_id"])
df_wiki_node["new_id"] = range(len(df_wiki_node))
df_wiki_node = df_wiki_node.rename(columns={"wikidata_id":"wiki_id"})
df_wiki_node["product_info"] = df_wiki_node["product_info"].progress_apply(extract_statements)
df_wiki_node["product_info"] = df_wiki_node["product_info"].progress_apply(extract_statements)
df_wiki_node = df_wiki_node.merge(df_descrp[["wiki_id","descriptions"]], on="wiki_id", how="left")
df_wiki_node["descriptions_clean"] = df_wiki_node["descriptions"].progress_apply(find_category)
df_wiki_node['descriptions_clean'] = df_wiki_node['descriptions_clean'].fillna(df_wiki_node['product_info'])
df_wiki_node["descriptions_clean"] = df_wiki_node["descriptions_clean"].fillna("nothing")
# df_wiki_node[variable5] = df_wiki_node[variable5].apply(convert_label_numeric)
keys_list = df_wiki_node["wiki_id"].values.tolist()
values_list = df_wiki_node["new_id"].values.tolist()
zip_iterator = zip(keys_list, values_list)
a_dictionary = dict(zip_iterator)
map_dictionary = {**a_dictionary}
df_graph["start_new_id"] = df_graph["wikidata_id_start"].map(map_dictionary )
df_graph["end_new_id"] = df_graph["wikidata_id_end"].map(map_dictionary )
# model
data = Data()
a = torch.tensor(df_graph[["end_new_id", "start_new_id"]].values, dtype=torch.long).t()
b = torch.tensor(df_graph[["start_new_id", "end_new_id"]].values, dtype=torch.long).t()
data.edge_index = torch.cat((a,b), 1)
df_index = df_wiki_node[["new_id",variable5]].dropna()
# shuffle
result = df_index.sample(frac=1.0)
# get the first two by group
result = result.groupby(variable5).sample(frac=frac_data)
result = result.sort_values(variable5)
train_list = np.full(len(df_wiki_node), False)
train_list[result.new_id.values] = True
test_list = np.full(len(df_wiki_node), False)
test_list[list(set(df_index.new_id.values) - set(result.new_id.values))] = True
data.train_mask = torch.tensor(train_list)
data.test_mask = torch.tensor(test_list)
df_wiki_node[variable5] = df_wiki_node[variable5].fillna("nothing")
df_wiki_node[variable5] = df_wiki_node[variable5].factorize()[0]
data.y = torch.tensor(df_wiki_node[variable5].values, dtype=torch.int64)
df_wiki_node[variable6] = df_wiki_node[variable6].fillna("another")
del msci,msci2,SDG1,SDG2,df_label,df_sector,df_merge2,df_merge3,df_wiki,df_entail,df_wiki_id,df_graph
df_wiki_node["concat_header_cleaned"] = df_wiki_node["concat_header_cleaned"].fillna("nothing")
df_wiki_node[column_features] = df_wiki_node[column_features].fillna(0)
df_wiki_node["stem_report_evidence"] = df_wiki_node["stem_report_evidence"].fillna("nothing")
features1 = pd.get_dummies(df_wiki_node[variable6])
features2 = get_BoW(df_wiki_node, "concat_header_cleaned", 20,60)
features3 = df_wiki_node[column_features]
features4 = get_BoW(df_wiki_node, "descriptions_clean", 20,60)
# if number == 13:
# features5 = get_BoW(df_wiki_node, "stem_report_evidence", param1 = 20)
# else:
# features5 = get_BoW(df_wiki_node, "stem_report_evidence", param1 = 0)
features = np.concatenate((features1, features2, features3, features4), 1)
# features = np.concatenate((features1, features4), 1)
data.x = torch.tensor(features, dtype=torch.float)
# data.x = torch.eye(df_wiki_node.shape[0])
class GCN(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = GCNConv(data.x.shape[1], 16)
self.conv2 = GCNConv(16, len(data.y.unique()))
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
# device = torch.device('cuda' if quit() else 'cpu')
device = "cpu"
print("device", device)
model = GCN().to(device)
data = data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-3)
losses = []
model.train()
best_score_train = []
best_score_validation = []
best_score_test = []
for epoch in range(5000):
if epoch % 1000 == 0:
print(epoch)
if epoch % 30 == 0:
model.eval()
pred = model(data).argmax(dim=1)
acc_train = f1_score(data.y[data.train_mask].cpu(), pred[data.train_mask].cpu(), average=measure)
acc_test = f1_score(data.y[data.test_mask].cpu(), pred[data.test_mask].cpu(), average=measure)
# print(f'Accuracy: {acc_train:.4f}, {acc_test:.4f}')
best_score_train.append(acc_train)
best_score_test.append(acc_test)
if acc_test < best_score_test[-1]:
break
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
losses.append(loss.item())
loss.backward()
optimizer.step()
# something else comparison #########################################
X = data.x.cpu().numpy()
y = data.y.cpu().numpy()
X_train = X[data.train_mask.cpu()]
y_train = y[data.train_mask.cpu()]
X_test = X[data.test_mask.cpu()]
y_test = y[data.test_mask.cpu()]
ros = RandomOverSampler(random_state=42)
X_train, y_train = ros.fit_resample(X_train, y_train)
# X_test, y_test = ros.fit_resample(X_test, y_test)
model = BalancedRandomForestClassifier()
model.fit(X_train, y_train)
expected_y = y_test
predicted_y = model.predict(X_test)
comparison_score = f1_score(expected_y,predicted_y, average=measure)
#####
X_train = features1.values[data.train_mask.cpu()]
y_train = y[data.train_mask.cpu()]
X_test = features1.values[data.test_mask.cpu()]
ros = RandomOverSampler(random_state=42)
X_train, y_train = ros.fit_resample(X_train, y_train)
model.fit(X_train, y_train)
expected_y = y_test
predicted_y = model.predict(X_test)
comparison_score2 = f1_score(expected_y,predicted_y, average=measure)
###################################################################
# save scores
all_scores.append([number, max(best_score_train), max(best_score_test), comparison_score, comparison_score2, best_score_train[-1], best_score_test[-1]])
print("best scores train & test", max(best_score_train), max(best_score_test), comparison_score, comparison_score2)
print("score end train & test", best_score_train[-1], best_score_test[-1])
# from matplotlib import pyplot as plt
# fig = plt.figure()
# plt.plot(best_score_train)
# plt.plot(best_score_test)
# # plt.show()
# fig.savefig('./figures/SDG_{}.png'.format(number), dpi=fig.dpi)
# except:
# all_scores.append(None)
overall_all_scores.append(all_scores)
with open('./results/KG/msci_gcn_{}_{}.pkl'.format(frac_data, measure),'wb') as f:
pickle.dump(overall_all_scores, f, protocol=pickle.HIGHEST_PROTOCOL)