Skip to content

Commit

Permalink
Merge pull request #396 from MRXLT/0.2.0-fix-doc
Browse files Browse the repository at this point in the history
update doc
  • Loading branch information
MRXLT authored Apr 3, 2020
2 parents 1aef5af + f2318de commit 3b90ef3
Show file tree
Hide file tree
Showing 5 changed files with 13 additions and 11 deletions.
7 changes: 4 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `port` | int | `9292` | Exposed port of current service to users|
| `name` | str | `""` | Service name, can be used to generate HTTP request url |
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory optimization |

Here, we use `curl` to send a HTTP POST request to the service we just started. Users can use any python library to send HTTP POST as well, e.g, [requests](https://requests.readthedocs.io/en/master/).
</center>
Expand Down Expand Up @@ -222,7 +223,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | DNN-CTR |
| URL | None(Get model by [local_train.py](./python/examples/criteo_ctr/local_train.py)) |
| URL | https://paddle-serving.bj.bcebos.com/criteo_ctr_example/criteo_ctr_demo_model.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr |
| Description | Get click probability from a feature vector of item |

Expand All @@ -231,7 +232,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| Model Name | DNN-CTR(with cube) |
| URL | None(Get model by [local_train.py](python/examples/criteo_ctr_with_cube/local_train.py)) |
| URL | https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz |
| Client/Server Code | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr_with_cube |
| Description | Get click probability from a feature vector of item |

Expand All @@ -249,7 +250,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
- [Compile from source code](doc/COMPILE.md)

### About Efficiency
- [How to profile Paddle Serving latency?](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/util)
- [How to profile Paddle Serving latency?](python/examples/util)
- [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md)
- [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md)

Expand Down
7 changes: 4 additions & 3 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,7 @@ python -m paddle_serving_server.serve --model uci_housing_model --thread 10 --po
| `port` | int | `9292` | Exposed port of current service to users|
| `name` | str | `""` | Service name, can be used to generate HTTP request url |
| `model` | str | `""` | Path of paddle model directory to be served |
| `mem_optim` | bool | `False` | Enable memory optimization |

我们使用 `curl` 命令来发送HTTP POST请求给刚刚启动的服务。用户也可以调用python库来发送HTTP POST请求,请参考英文文档 [requests](https://requests.readthedocs.io/en/master/)
</center>
Expand Down Expand Up @@ -227,7 +228,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| 模型名 | DNN-CTR |
| 下载链接 | None(Get model by [local_train.py](./python/examples/criteo_ctr/local_train.py)) |
| 下载链接 | https://paddle-serving.bj.bcebos.com/criteo_ctr_example/criteo_ctr_demo_model.tar.gz |
| 客户端/服务端代码 | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr |
| 介绍 | 从项目的特征向量中获得点击概率 |

Expand All @@ -236,7 +237,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
| Key | Value |
| :----------------- | :----------------------------------------------------------- |
| 模型名 | DNN-CTR(with cube) |
| 下载链接 | None(Get model by [local_train.py](python/examples/criteo_ctr_with_cube/local_train.py)) |
| 下载链接 | https://paddle-serving.bj.bcebos.com/unittest/ctr_cube_unittest.tar.gz |
| 客户端/服务端代码 | https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/criteo_ctr_with_cube |
| 介绍 | 从项目的特征向量中获得点击概率 |

Expand All @@ -255,7 +256,7 @@ curl -H "Content-Type:application/json" -X POST -d '{"url": "https://paddle-serv
- [如何编译PaddleServing?](doc/COMPILE_CN.md)

### 关于Paddle Serving性能
- [如何测试Paddle Serving性能?](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/util/)
- [如何测试Paddle Serving性能?](python/examples/util/)
- [CPU版Benchmarks](doc/BENCHMARKING.md)
- [GPU版Benchmarks](doc/GPU_BENCHMARKING.md)

Expand Down
2 changes: 1 addition & 1 deletion doc/SERVER_DAG.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ Deep neural nets often have some preprocessing steps on input data, and postproc

## How to define Node

PaddleServing has some predefined Computation Node in the framework. A very commonly used Computation Graph is the simple reader-inference-response mode that can cover most of the single model inference scenarios. A example graph and the corresponding DAG defination code is as follows.
PaddleServing has some predefined Computation Node in the framework. A very commonly used Computation Graph is the simple reader-inference-response mode that can cover most of the single model inference scenarios. A example graph and the corresponding DAG definition code is as follows.
<center>
<img src='simple_dag.png' width = "260" height = "370" align="middle"/>
</center>
Expand Down
4 changes: 2 additions & 2 deletions doc/TRAIN_TO_SERVICE.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@
Paddle Serving is Paddle's high-performance online inference service framework, which can flexibly support the deployment of most models. In this article, the IMDB review sentiment analysis task is used as an example to show the entire process from model training to deployment of inference service through 9 steps.

## Step1:Prepare for Running Environment
Paddle Serving can be deployed on Linux environments such as Centos and Ubuntu. On other systems or in environments where you do not want to install the serving module, you can still access the server-side prediction service through the http service.
Paddle Serving can be deployed on Linux environments.Currently the server supports deployment on Centos7. [Docker deployment is recommended](RUN_IN_DOCKER.md). The rpc client supports deploymen on Centos7 and Ubuntu 18.On other systems or in environments where you do not want to install the serving module, you can still access the server-side prediction service through the http service.

You can choose to install the cpu or gpu version of the server module according to the requirements and machine environment, and install the client module on the client machine. When you want to access the server with http
You can choose to install the cpu or gpu version of the server module according to the requirements and machine environment, and install the client module on the client machine. When you want to access the server with http, there is not need to install client module.

```shell
pip install paddle_serving_server #cpu version server side
Expand Down
4 changes: 2 additions & 2 deletions doc/TRAIN_TO_SERVICE_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,9 @@ Paddle Serving是Paddle的高性能在线预测服务框架,可以灵活支持

## Step1:准备环境

Paddle Serving可以部署在Centos和Ubuntu等Linux环境上,在其他系统上或者不希望安装serving模块的环境中仍然可以通过http服务来访问server端的预测服务。
Paddle Serving可以部署在Linux环境上,目前server端支持在Centos7上部署,推荐使用[Docker部署](RUN_IN_DOCKER_CN.md)。rpc client端可以在Centos7和Ubuntu18上部署,在其他系统上或者不希望安装serving模块的环境中仍然可以通过http服务来访问server端的预测服务。

可以根据需求和机器环境来选择安装cpu或gpu版本的server模块,在client端机器上安装client模块。当希望同http来访问server端
可以根据需求和机器环境来选择安装cpu或gpu版本的server模块,在client端机器上安装client模块。使用http请求的方式来访问server时,client端机器不需要安装client模块。

```shell
pip install paddle_serving_server #cpu版本server端
Expand Down

0 comments on commit 3b90ef3

Please sign in to comment.