-
-
Notifications
You must be signed in to change notification settings - Fork 583
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
23 changed files
with
3,250 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# Note |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,350 @@ | ||
#!/usr/bin/env python | ||
|
||
import copy | ||
import cv2 | ||
import time | ||
import numpy as np | ||
import onnxruntime | ||
from argparse import ArgumentParser | ||
from typing import Tuple, Optional, List | ||
|
||
|
||
class GoldYOLOONNX(object): | ||
def __init__( | ||
self, | ||
model_path: Optional[str] = 'gold_yolo_n_hand_post_0333_0.4040_1x3x480x640.onnx', | ||
class_score_th: Optional[float] = 0.35, | ||
providers: Optional[List] = [ | ||
# ( | ||
# 'TensorrtExecutionProvider', { | ||
# 'trt_engine_cache_enable': True, | ||
# 'trt_engine_cache_path': '.', | ||
# 'trt_fp16_enable': True, | ||
# } | ||
# ), | ||
'CUDAExecutionProvider', | ||
'CPUExecutionProvider', | ||
], | ||
): | ||
"""GoldYOLOONNX | ||
Parameters | ||
---------- | ||
model_path: Optional[str] | ||
ONNX file path for GoldYOLO | ||
class_score_th: Optional[float] | ||
Score threshold. Default: 0.35 | ||
providers: Optional[List] | ||
Name of onnx execution providers | ||
Default: | ||
[ | ||
( | ||
'TensorrtExecutionProvider', { | ||
'trt_engine_cache_enable': True, | ||
'trt_engine_cache_path': '.', | ||
'trt_fp16_enable': True, | ||
} | ||
), | ||
'CUDAExecutionProvider', | ||
'CPUExecutionProvider', | ||
] | ||
""" | ||
# Threshold | ||
self.class_score_th = class_score_th | ||
|
||
# Model loading | ||
session_option = onnxruntime.SessionOptions() | ||
session_option.log_severity_level = 3 | ||
self.onnx_session = onnxruntime.InferenceSession( | ||
model_path, | ||
sess_options=session_option, | ||
providers=providers, | ||
) | ||
self.providers = self.onnx_session.get_providers() | ||
|
||
self.input_shapes = [ | ||
input.shape for input in self.onnx_session.get_inputs() | ||
] | ||
self.input_names = [ | ||
input.name for input in self.onnx_session.get_inputs() | ||
] | ||
self.output_names = [ | ||
output.name for output in self.onnx_session.get_outputs() | ||
] | ||
|
||
|
||
def __call__( | ||
self, | ||
image: np.ndarray, | ||
) -> Tuple[np.ndarray, np.ndarray]: | ||
"""YOLOv7ONNX | ||
Parameters | ||
---------- | ||
image: np.ndarray | ||
Entire image | ||
Returns | ||
------- | ||
boxes: np.ndarray | ||
Predicted boxes: [N, y1, x1, y2, x2] | ||
scores: np.ndarray | ||
Predicted box scores: [N, score] | ||
""" | ||
temp_image = copy.deepcopy(image) | ||
|
||
# PreProcess | ||
resized_image = self.__preprocess( | ||
temp_image, | ||
) | ||
|
||
# Inference | ||
inferece_image = np.asarray([resized_image], dtype=np.float32) | ||
boxes = self.onnx_session.run( | ||
self.output_names, | ||
{input_name: inferece_image for input_name in self.input_names}, | ||
)[0] | ||
|
||
# PostProcess | ||
result_boxes, result_scores = \ | ||
self.__postprocess( | ||
image=temp_image, | ||
boxes=boxes, | ||
) | ||
|
||
return result_boxes, result_scores | ||
|
||
|
||
def __preprocess( | ||
self, | ||
image: np.ndarray, | ||
swap: Optional[Tuple[int,int,int]] = (2, 0, 1), | ||
) -> np.ndarray: | ||
"""__preprocess | ||
Parameters | ||
---------- | ||
image: np.ndarray | ||
Entire image | ||
swap: tuple | ||
HWC to CHW: (2,0,1) | ||
CHW to HWC: (1,2,0) | ||
HWC to HWC: (0,1,2) | ||
CHW to CHW: (0,1,2) | ||
Returns | ||
------- | ||
resized_image: np.ndarray | ||
Resized and normalized image. | ||
""" | ||
# Normalization + BGR->RGB | ||
resized_image = cv2.resize( | ||
image, | ||
( | ||
int(self.input_shapes[0][3]), | ||
int(self.input_shapes[0][2]), | ||
) | ||
) | ||
resized_image = np.divide(resized_image, 255.0) | ||
resized_image = resized_image[..., ::-1] | ||
resized_image = resized_image.transpose(swap) | ||
resized_image = np.ascontiguousarray( | ||
resized_image, | ||
dtype=np.float32, | ||
) | ||
return resized_image | ||
|
||
|
||
def __postprocess( | ||
self, | ||
image: np.ndarray, | ||
boxes: np.ndarray, | ||
) -> Tuple[np.ndarray, np.ndarray]: | ||
"""__postprocess | ||
Parameters | ||
---------- | ||
image: np.ndarray | ||
Entire image. | ||
boxes: np.ndarray | ||
float32[N, 7] | ||
Returns | ||
------- | ||
result_boxes: np.ndarray | ||
Predicted boxes: [N, y1, x1, y2, x2] | ||
result_scores: np.ndarray | ||
Predicted box confs: [N, score] | ||
""" | ||
image_height = image.shape[0] | ||
image_width = image.shape[1] | ||
|
||
""" | ||
Detector is | ||
N -> Number of boxes detected | ||
batchno -> always 0: BatchNo.0 | ||
batchno_classid_y1x1y2x2_score: float32[N,7] | ||
""" | ||
result_boxes = [] | ||
result_scores = [] | ||
if len(boxes) > 0: | ||
scores = boxes[:, 6:7] | ||
keep_idxs = scores[:, 0] > self.class_score_th | ||
scores_keep = scores[keep_idxs, :] | ||
boxes_keep = boxes[keep_idxs, :] | ||
|
||
if len(boxes_keep) > 0: | ||
for box, score in zip(boxes_keep, scores_keep): | ||
x_min = int(max(box[2], 0) * image_width / self.input_shapes[0][3]) | ||
y_min = int(max(box[3], 0) * image_height / self.input_shapes[0][2]) | ||
x_max = int(min(box[4], self.input_shapes[0][3]) * image_width / self.input_shapes[0][3]) | ||
y_max = int(min(box[5], self.input_shapes[0][2]) * image_height / self.input_shapes[0][2]) | ||
|
||
result_boxes.append( | ||
[x_min, y_min, x_max, y_max] | ||
) | ||
result_scores.append( | ||
score | ||
) | ||
|
||
return np.asarray(result_boxes), np.asarray(result_scores) | ||
|
||
|
||
def is_parsable_to_int(s): | ||
try: | ||
int(s) | ||
return True | ||
except ValueError: | ||
return False | ||
|
||
|
||
def main(): | ||
parser = ArgumentParser() | ||
parser.add_argument( | ||
'-m', | ||
'--model', | ||
type=str, | ||
default='gold_yolo_n_hand_post_0333_0.4040_1x3x480x640.onnx', | ||
) | ||
parser.add_argument( | ||
'-v', | ||
'--video', | ||
type=str, | ||
default="0", | ||
) | ||
args = parser.parse_args() | ||
|
||
model = GoldYOLOONNX( | ||
model_path=args.model, | ||
) | ||
|
||
cap = cv2.VideoCapture( | ||
int(args.video) if is_parsable_to_int(args.video) else args.video | ||
) | ||
cap_fps = cap.get(cv2.CAP_PROP_FPS) | ||
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | ||
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | ||
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') | ||
video_writer = cv2.VideoWriter( | ||
filename='output.mp4', | ||
fourcc=fourcc, | ||
fps=cap_fps, | ||
frameSize=(w, h), | ||
) | ||
|
||
while cap.isOpened(): | ||
res, image = cap.read() | ||
if not res: | ||
break | ||
|
||
debug_image = copy.deepcopy(image) | ||
|
||
start_time = time.time() | ||
boxes, scores = model(debug_image) | ||
elapsed_time = time.time() - start_time | ||
fps = 1 / elapsed_time | ||
cv2.putText( | ||
debug_image, | ||
f'{fps:.1f} FPS (inferece + post-process)', | ||
(10, 30), | ||
cv2.FONT_HERSHEY_SIMPLEX, | ||
0.7, | ||
(255, 255, 255), | ||
2, | ||
cv2.LINE_AA, | ||
) | ||
cv2.putText( | ||
debug_image, | ||
f'{fps:.1f} FPS (inferece + post-process)', | ||
(10, 30), | ||
cv2.FONT_HERSHEY_SIMPLEX, | ||
0.7, | ||
(0, 0, 255), | ||
1, | ||
cv2.LINE_AA, | ||
) | ||
|
||
for box, score in zip(boxes, scores): | ||
cv2.rectangle( | ||
debug_image, | ||
(box[0], box[1]), | ||
(box[2], box[3]), | ||
(255,255,255), | ||
2, | ||
) | ||
cv2.rectangle( | ||
debug_image, | ||
(box[0], box[1]), | ||
(box[2], box[3]), | ||
(0,0,255), | ||
1, | ||
) | ||
cv2.putText( | ||
debug_image, | ||
f'{score[0]:.2f}', | ||
( | ||
box[0], | ||
box[1]-10 if box[1]-10 > 0 else 10 | ||
), | ||
cv2.FONT_HERSHEY_SIMPLEX, | ||
0.7, | ||
(255, 255, 255), | ||
2, | ||
cv2.LINE_AA, | ||
) | ||
cv2.putText( | ||
debug_image, | ||
f'{score[0]:.2f}', | ||
( | ||
box[0], | ||
box[1]-10 if box[1]-10 > 0 else 10 | ||
), | ||
cv2.FONT_HERSHEY_SIMPLEX, | ||
0.7, | ||
(0, 0, 255), | ||
1, | ||
cv2.LINE_AA, | ||
) | ||
|
||
key = cv2.waitKey(1) | ||
if key == 27: # ESC | ||
break | ||
|
||
cv2.imshow("test", debug_image) | ||
video_writer.write(debug_image) | ||
|
||
if video_writer: | ||
video_writer.release() | ||
|
||
if cap: | ||
cap.release() | ||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.