-
-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
packaging:drop dependency on neon package #8
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
This file was deleted.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# taken from https://github.com/NeonGeckoCom/streaming-stt-nemo | ||
|
||
# NEON AI (TM) SOFTWARE, Software Development Kit & Application Framework | ||
# All trademark and other rights reserved by their respective owners | ||
# Copyright 2008-2022 Neongecko.com Inc. | ||
# Contributors: Daniel McKnight, Guy Daniels, Elon Gasper, Richard Leeds, | ||
# Regina Bloomstine, Casimiro Ferreira, Andrii Pernatii, Kirill Hrymailo | ||
# BSD-3 License | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are met: | ||
# 1. Redistributions of source code must retain the above copyright notice, | ||
# this list of conditions and the following disclaimer. | ||
# 2. Redistributions in binary form must reproduce the above copyright notice, | ||
# this list of conditions and the following disclaimer in the documentation | ||
# and/or other materials provided with the distribution. | ||
# 3. Neither the name of the copyright holder nor the names of its | ||
# contributors may be used to endorse or promote products derived from this | ||
# software without specific prior written permission. | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | ||
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | ||
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import ctypes | ||
import gc | ||
import os.path | ||
|
||
import numpy as np | ||
import onnxruntime as ort | ||
import sentencepiece as spm | ||
import soxr | ||
import torch | ||
from huggingface_hub import hf_hub_download | ||
from pydub import AudioSegment | ||
|
||
languages = { | ||
"en": { | ||
"model": "neongeckocom/stt_en_citrinet_512_gamma_0_25", | ||
}, | ||
"es": { | ||
"model": "neongeckocom/stt_es_citrinet_512_gamma_0_25", | ||
}, | ||
"fr": { | ||
"model": "neongeckocom/stt_fr_citrinet_512_gamma_0_25", | ||
}, | ||
"de": { | ||
"model": "neongeckocom/stt_de_citrinet_512_gamma_0_25", | ||
}, | ||
"it": { | ||
"model": "neongeckocom/stt_it_citrinet_512_gamma_0_25", | ||
}, | ||
"uk": { | ||
"model": "neongeckocom/stt_uk_citrinet_512_gamma_0_25", | ||
}, | ||
"nl": { | ||
"model": "neongeckocom/stt_nl_citrinet_512_gamma_0_25", | ||
}, | ||
"pt": { | ||
"model": "neongeckocom/stt_pt_citrinet_512_gamma_0_25", | ||
}, | ||
"ca": { | ||
"model": "projecte-aina/stt-ca-citrinet-512" | ||
}, | ||
} | ||
|
||
sample_rate = 16000 | ||
subfolder_name = "onnx" | ||
available_languages = list(languages.keys()) | ||
|
||
|
||
class Model: | ||
langs = languages | ||
sample_rate = sample_rate | ||
|
||
def __init__(self, lang="en", model_folder=None): | ||
if model_folder: | ||
self._init_model_from_path(model_folder) | ||
else: | ||
self._init_model(lang) | ||
|
||
def _init_model(self, lang: str): | ||
if lang not in self.langs: | ||
raise ValueError(f"Unsupported language '{lang}'. Available languages: {list(self.langs.keys())}") | ||
model_name = self.langs[lang]["model"] | ||
self._init_preprocessor(model_name) | ||
self._init_encoder(model_name) | ||
self._init_tokenizer(model_name) | ||
self._trim_memory() | ||
|
||
def _init_model_from_path(self, path: str): | ||
if not os.path.isdir(path): | ||
raise ValueError(f"'{path}' is not valid NemoSTT onnx model folder") | ||
preprocessor_path = f"{path}/preprocessor.ts" | ||
encoder_path = f"{path}/model.onnx" | ||
tokenizer_path = f"{path}/tokenizer.spm" | ||
self._init_preprocessor(preprocessor_path) | ||
self._init_encoder(encoder_path) | ||
self._init_tokenizer(tokenizer_path) | ||
self._trim_memory() | ||
|
||
def _init_preprocessor(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
preprocessor_path = model_name | ||
else: | ||
preprocessor_path = hf_hub_download(model_name, "preprocessor.ts", subfolder=subfolder_name) | ||
self.preprocessor = torch.jit.load(preprocessor_path) | ||
|
||
def _init_encoder(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
encoder_path = model_name | ||
else: | ||
encoder_path = hf_hub_download(model_name, "model.onnx", subfolder=subfolder_name) | ||
self.encoder = ort.InferenceSession(encoder_path) | ||
|
||
def _init_tokenizer(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
tokenizer_path = model_name | ||
else: | ||
tokenizer_path = hf_hub_download(model_name, "tokenizer.spm", subfolder=subfolder_name) | ||
self.tokenizer = spm.SentencePieceProcessor(tokenizer_path) | ||
|
||
def _run_preprocessor(self, audio_16k: np.array): | ||
input_signal = torch.tensor(audio_16k).unsqueeze(0) | ||
length = torch.tensor(len(audio_16k)).unsqueeze(0) | ||
processed_signal, processed_signal_len = self.preprocessor.forward( | ||
input_signal=input_signal, length=length | ||
) | ||
processed_signal = processed_signal.numpy() | ||
processed_signal_len = processed_signal_len.numpy() | ||
return processed_signal, processed_signal_len | ||
|
||
def _run_encoder(self, processed_signal: np.array, processed_signal_len: np.array): | ||
outputs = self.encoder.run(None, {'audio_signal': processed_signal, | ||
'length': processed_signal_len}) | ||
logits = outputs[0][0] | ||
return logits | ||
|
||
def _run_tokenizer(self, logits: np.array): | ||
blank_id = self.tokenizer.vocab_size() | ||
decoded_prediction = self._ctc_decode(logits, blank_id) | ||
text = self.tokenizer.decode_ids(decoded_prediction) | ||
current_hypotheses = [text] | ||
return current_hypotheses | ||
|
||
@staticmethod | ||
def _ctc_decode(logits: np.array, blank_id: int): | ||
labels = logits.argmax(axis=1).tolist() | ||
|
||
previous = blank_id | ||
decoded_prediction = [] | ||
for p in labels: | ||
if (p != previous or previous == blank_id) and p != blank_id: | ||
decoded_prediction.append(p) | ||
previous = p | ||
return decoded_prediction | ||
|
||
def stt(self, audio_buffer: np.array, sr: int): | ||
audio_fp32 = self._to_float32(audio_buffer) | ||
audio_16k = self._resample(audio_fp32, sr) | ||
|
||
processed_signal, processed_signal_len = self._run_preprocessor(audio_16k) | ||
logits = self._run_encoder(processed_signal, processed_signal_len) | ||
current_hypotheses = self._run_tokenizer(logits) | ||
|
||
self._trim_memory() | ||
return current_hypotheses | ||
|
||
def stt_file(self, file_path: str): | ||
audio_buffer, sr = self.read_file(file_path) | ||
current_hypotheses = self.stt(audio_buffer, sr) | ||
return current_hypotheses | ||
|
||
def read_file(self, file_path: str): | ||
audio_file = AudioSegment.from_file(file_path) | ||
sr = audio_file.frame_rate | ||
|
||
samples = audio_file.get_array_of_samples() | ||
audio_buffer = np.array(samples) | ||
return audio_buffer, sr | ||
|
||
@staticmethod | ||
def _trim_memory(): | ||
""" | ||
If possible, gives memory allocated by PyTorch back to the system | ||
""" | ||
libc = ctypes.CDLL("libc.so.6") | ||
libc.malloc_trim(0) | ||
gc.collect() | ||
|
||
def _resample(self, audio_fp32: np.array, sr: int): | ||
audio_16k = soxr.resample(audio_fp32, sr, self.sample_rate) | ||
return audio_16k | ||
|
||
def _to_float32(self, audio_buffer: np.array): | ||
audio_fp32 = np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) | ||
return audio_fp32 | ||
Comment on lines
+201
to
+203
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Handle floating-point data types in The Update the method to accommodate different data types: def _to_float32(self, audio_buffer: np.array):
if np.issubdtype(audio_buffer.dtype, np.integer):
max_val = np.iinfo(audio_buffer.dtype).max
audio_fp32 = np.divide(audio_buffer, max_val, dtype=np.float32)
elif np.issubdtype(audio_buffer.dtype, np.floating):
audio_fp32 = audio_buffer.astype(np.float32)
else:
raise ValueError(f"Unsupported audio buffer data type: {audio_buffer.dtype}")
return audio_fp32 |
||
|
||
|
||
__all__ = ["Model", "available_languages"] |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,13 @@ | ||
ovos-plugin-manager>=0.0.24 | ||
ovos-utils~=0.0,>=0.0.30 | ||
streaming-stt-nemo~=0.2 | ||
SpeechRecognition~=3.8 | ||
SpeechRecognition~=3.8 | ||
# model | ||
torch>=1.13.1 | ||
onnxruntime | ||
sentencepiece | ||
# resampling | ||
soxr | ||
pydub | ||
# huggingface | ||
huggingface-hub | ||
numpy<2.0.0 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ensure cross-platform compatibility in
_trim_memory
method.The
_trim_memory
method useslibc.so.6
, which is specific to Linux systems. This will raise an exception on other platforms like Windows or macOS. Consider adding a platform check or using a cross-platform approach for memory trimming.Modify the method to check the operating system: