-
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
packaging:drop dependency on neon package (#8)
* packaging:drop dependency on neon package * cpu only pytorch * Apply suggestions from code review Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com> * allow lower pytorch version * . --------- Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
- Loading branch information
1 parent
8eaef9e
commit 4bfcbeb
Showing
5 changed files
with
225 additions
and
71 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# taken from https://github.com/NeonGeckoCom/streaming-stt-nemo | ||
|
||
# NEON AI (TM) SOFTWARE, Software Development Kit & Application Framework | ||
# All trademark and other rights reserved by their respective owners | ||
# Copyright 2008-2022 Neongecko.com Inc. | ||
# Contributors: Daniel McKnight, Guy Daniels, Elon Gasper, Richard Leeds, | ||
# Regina Bloomstine, Casimiro Ferreira, Andrii Pernatii, Kirill Hrymailo | ||
# BSD-3 License | ||
# Redistribution and use in source and binary forms, with or without | ||
# modification, are permitted provided that the following conditions are met: | ||
# 1. Redistributions of source code must retain the above copyright notice, | ||
# this list of conditions and the following disclaimer. | ||
# 2. Redistributions in binary form must reproduce the above copyright notice, | ||
# this list of conditions and the following disclaimer in the documentation | ||
# and/or other materials provided with the distribution. | ||
# 3. Neither the name of the copyright holder nor the names of its | ||
# contributors may be used to endorse or promote products derived from this | ||
# software without specific prior written permission. | ||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, | ||
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR | ||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, | ||
# OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | ||
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
|
||
import ctypes | ||
import gc | ||
import os.path | ||
|
||
import numpy as np | ||
import onnxruntime as ort | ||
import sentencepiece as spm | ||
import soxr | ||
import torch | ||
from huggingface_hub import hf_hub_download | ||
from pydub import AudioSegment | ||
|
||
languages = { | ||
"en": { | ||
"model": "neongeckocom/stt_en_citrinet_512_gamma_0_25", | ||
}, | ||
"es": { | ||
"model": "neongeckocom/stt_es_citrinet_512_gamma_0_25", | ||
}, | ||
"fr": { | ||
"model": "neongeckocom/stt_fr_citrinet_512_gamma_0_25", | ||
}, | ||
"de": { | ||
"model": "neongeckocom/stt_de_citrinet_512_gamma_0_25", | ||
}, | ||
"it": { | ||
"model": "neongeckocom/stt_it_citrinet_512_gamma_0_25", | ||
}, | ||
"uk": { | ||
"model": "neongeckocom/stt_uk_citrinet_512_gamma_0_25", | ||
}, | ||
"nl": { | ||
"model": "neongeckocom/stt_nl_citrinet_512_gamma_0_25", | ||
}, | ||
"pt": { | ||
"model": "neongeckocom/stt_pt_citrinet_512_gamma_0_25", | ||
}, | ||
"ca": { | ||
"model": "projecte-aina/stt-ca-citrinet-512" | ||
}, | ||
} | ||
|
||
sample_rate = 16000 | ||
subfolder_name = "onnx" | ||
available_languages = list(languages.keys()) | ||
|
||
|
||
class Model: | ||
langs = languages | ||
sample_rate = sample_rate | ||
|
||
def __init__(self, lang="en", model_folder=None): | ||
if model_folder: | ||
self._init_model_from_path(model_folder) | ||
else: | ||
self._init_model(lang) | ||
|
||
def _init_model(self, lang: str): | ||
if lang not in self.langs: | ||
raise ValueError(f"Unsupported language '{lang}'. Available languages: {list(self.langs.keys())}") | ||
model_name = self.langs[lang]["model"] | ||
self._init_preprocessor(model_name) | ||
self._init_encoder(model_name) | ||
self._init_tokenizer(model_name) | ||
self._trim_memory() | ||
|
||
def _init_model_from_path(self, path: str): | ||
if not os.path.isdir(path): | ||
raise ValueError(f"'{path}' is not valid NemoSTT onnx model folder") | ||
preprocessor_path = f"{path}/preprocessor.ts" | ||
encoder_path = f"{path}/model.onnx" | ||
tokenizer_path = f"{path}/tokenizer.spm" | ||
self._init_preprocessor(preprocessor_path) | ||
self._init_encoder(encoder_path) | ||
self._init_tokenizer(tokenizer_path) | ||
self._trim_memory() | ||
|
||
def _init_preprocessor(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
preprocessor_path = model_name | ||
else: | ||
preprocessor_path = hf_hub_download(model_name, "preprocessor.ts", subfolder=subfolder_name) | ||
self.preprocessor = torch.jit.load(preprocessor_path) | ||
|
||
def _init_encoder(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
encoder_path = model_name | ||
else: | ||
encoder_path = hf_hub_download(model_name, "model.onnx", subfolder=subfolder_name) | ||
self.encoder = ort.InferenceSession(encoder_path) | ||
|
||
def _init_tokenizer(self, model_name: str): | ||
if os.path.isfile(model_name): | ||
tokenizer_path = model_name | ||
else: | ||
tokenizer_path = hf_hub_download(model_name, "tokenizer.spm", subfolder=subfolder_name) | ||
self.tokenizer = spm.SentencePieceProcessor(tokenizer_path) | ||
|
||
def _run_preprocessor(self, audio_16k: np.array): | ||
input_signal = torch.tensor(audio_16k).unsqueeze(0) | ||
length = torch.tensor(len(audio_16k)).unsqueeze(0) | ||
processed_signal, processed_signal_len = self.preprocessor.forward( | ||
input_signal=input_signal, length=length | ||
) | ||
processed_signal = processed_signal.numpy() | ||
processed_signal_len = processed_signal_len.numpy() | ||
return processed_signal, processed_signal_len | ||
|
||
def _run_encoder(self, processed_signal: np.array, processed_signal_len: np.array): | ||
outputs = self.encoder.run(None, {'audio_signal': processed_signal, | ||
'length': processed_signal_len}) | ||
logits = outputs[0][0] | ||
return logits | ||
|
||
def _run_tokenizer(self, logits: np.array): | ||
blank_id = self.tokenizer.vocab_size() | ||
decoded_prediction = self._ctc_decode(logits, blank_id) | ||
text = self.tokenizer.decode_ids(decoded_prediction) | ||
current_hypotheses = [text] | ||
return current_hypotheses | ||
|
||
@staticmethod | ||
def _ctc_decode(logits: np.array, blank_id: int): | ||
labels = logits.argmax(axis=1).tolist() | ||
|
||
previous = blank_id | ||
decoded_prediction = [] | ||
for p in labels: | ||
if (p != previous or previous == blank_id) and p != blank_id: | ||
decoded_prediction.append(p) | ||
previous = p | ||
return decoded_prediction | ||
|
||
def stt(self, audio_buffer: np.array, sr: int): | ||
audio_fp32 = self._to_float32(audio_buffer) | ||
audio_16k = self._resample(audio_fp32, sr) | ||
|
||
processed_signal, processed_signal_len = self._run_preprocessor(audio_16k) | ||
logits = self._run_encoder(processed_signal, processed_signal_len) | ||
current_hypotheses = self._run_tokenizer(logits) | ||
|
||
self._trim_memory() | ||
return current_hypotheses | ||
|
||
def stt_file(self, file_path: str): | ||
audio_buffer, sr = self.read_file(file_path) | ||
current_hypotheses = self.stt(audio_buffer, sr) | ||
return current_hypotheses | ||
|
||
def read_file(self, file_path: str): | ||
audio_file = AudioSegment.from_file(file_path) | ||
sr = audio_file.frame_rate | ||
|
||
samples = audio_file.get_array_of_samples() | ||
audio_buffer = np.array(samples) | ||
return audio_buffer, sr | ||
|
||
@staticmethod | ||
def _trim_memory(): | ||
""" | ||
If possible, gives memory allocated by PyTorch back to the system | ||
""" | ||
libc = ctypes.CDLL("libc.so.6") | ||
libc.malloc_trim(0) | ||
gc.collect() | ||
|
||
def _resample(self, audio_fp32: np.array, sr: int): | ||
audio_16k = soxr.resample(audio_fp32, sr, self.sample_rate) | ||
return audio_16k | ||
|
||
def _to_float32(self, audio_buffer: np.array): | ||
audio_fp32 = np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) | ||
return audio_fp32 | ||
|
||
|
||
__all__ = ["Model", "available_languages"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,13 @@ | ||
ovos-plugin-manager>=0.0.24 | ||
ovos-utils~=0.0,>=0.0.30 | ||
streaming-stt-nemo~=0.2 | ||
SpeechRecognition~=3.8 | ||
SpeechRecognition~=3.8 | ||
# model | ||
torch>=1.13.1 | ||
onnxruntime | ||
sentencepiece | ||
# resampling | ||
soxr | ||
pydub | ||
# huggingface | ||
huggingface-hub | ||
numpy<2.0.0 |