Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Crawl news mfa #265

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions src/data/openthaigpt_pretraining_data/web_crawls_mfa/crawl_news.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
import requests
import time
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_gov_achievements import (
process_response,
process_info,
)

ROOT = "https://www.mfa.go.th"
DIV_TAG = "div"
P_TAG = "p"
A_TAG = "a"
DATE_CLASS = "date"
INFO_CLASS = "p-3 col-md-4"
DETAIL_CLASS = "ContentDetailstyled__ContentDescription-sc-150bmwg-4 jWrYsI mb-3"


def get_title_date(cur_url, page_no, time_delay):
"""
Description:
Get data processed by the function process_response.
Args:
cur_url: The desired URL to be used as a root.
page_no: The total number of pages.
time_delay: Delay before another request (in second).
Returns:
news_list: A list containing titles and dates.
"""
news_list = []

for page in range(1, page_no + 1):
url = f"{cur_url}&p={page}"
res = requests.get(url)
res.encoding = "utf-8"

if res.status_code == 200:
processed_data = process_response(res.text, time_delay)
news_list.extend(processed_data)

time.sleep(0.5)

return news_list


def get_info(cur_url, page_no, time_delay):
"""
Description:
get data inside a link for every pafe
Args:
desired url and total of pages.
Returns:
info_list contains details of the news
"""
info_list = []

for page in range(1, page_no + 1):
url = f"{cur_url}&p={page}"
res = requests.get(url)
res.encoding = "utf-8"

if res.status_code == 200:
processed_info = process_info(res.text, time_delay)
info_list.extend(processed_info)

time.sleep(0.5)

return info_list
21 changes: 21 additions & 0 deletions src/data/scripts/crawl_mfa/embassy_cosulate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
import pandas as pd
from datasets import Dataset, load_from_disk
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_news import (
get_title_date,
get_info,
)

EMBASSY_CONSULATE_URL = "https://www.mfa.go.th/th/page/%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A7%E0%B8%81%E0%B8%B4%E0%B8%88%E0%B8%81%E0%B8%A3%E0%B8%A3%E0%B8%A1%E0%B8%AA%E0%B8%96%E0%B8%B2%E0%B8%99%E0%B9%80%E0%B8%AD%E0%B8%81%E0%B8%AD%E0%B8%B1%E0%B8%84%E0%B8%A3%E0%B8%A3%E0%B8%B2%E0%B8%8A%E0%B8%97%E0%B8%B9%E0%B8%95%E0%B9%81%E0%B8%A5%E0%B8%B0%E0%B8%AA%E0%B8%96%E0%B8%B2%E0%B8%99%E0%B8%81%E0%B8%87%E0%B8%AA%E0%B8%B8%E0%B8%A5%E0%B9%83%E0%B8%AB%E0%B8%8D%E0%B9%88?menu=5f2110a3c1d7dc1b17651cb2"

news_title_date = get_title_date(cur_url=EMBASSY_CONSULATE_URL, page_no=501)
news_details = get_info(cur_url=EMBASSY_CONSULATE_URL, page_no=501)

for i, data_dict in enumerate(news_title_date):
if i < len(news_details):
data_dict.update({"detail": news_details[i]})

all_news = pd.DataFrame(news_title_date)
dataset = Dataset.from_pandas(all_news)
dataset.save_to_disk("mfa_embassy_consulate.arrow")
loaded_dataset = load_from_disk("mfa_embassy_consulate.arrow")

20 changes: 20 additions & 0 deletions src/data/scripts/crawl_mfa/other_news.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import pandas as pd
from datasets import Dataset, load_from_disk
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_news import (
get_title_date,
get_info,
)

OTHER_NEWS_URL = "https://www.mfa.go.th/th/page/%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A7%E0%B8%AD%E0%B8%B7%E0%B9%88%E0%B8%99%E0%B9%86?menu=5d5bd3d815e39c306002aac7"

news_title_date = get_title_date(cur_url=OTHER_NEWS_URL, page_no=10)
news_details = get_info(cur_url=OTHER_NEWS_URL, page_no=10)

for i, data_dict in enumerate(news_title_date):
if i < len(news_details):
data_dict.update({"detail": news_details[i]})

all_news = pd.DataFrame(news_title_date)
dataset = Dataset.from_pandas(all_news)
dataset.save_to_disk("mfa_other_news.arrow")
loaded_dataset = load_from_disk("mfa_other_news.arrow")
20 changes: 20 additions & 0 deletions src/data/scripts/crawl_mfa/press_release.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import pandas as pd
from datasets import Dataset, load_from_disk
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_news import (
get_title_date,
get_info,
)

PRESS_RELEASE_URL = "https://www.mfa.go.th/th/page/%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A7%E0%B8%AA%E0%B8%B2%E0%B8%A3%E0%B8%99%E0%B8%B4%E0%B9%80%E0%B8%97%E0%B8%A8?menu=5d5bd3d815e39c306002aac5"

news_title_date = get_title_date(cur_url=PRESS_RELEASE_URL, page_no=313)
news_details = get_info(cur_url=PRESS_RELEASE_URL, page_no=313)

for i, data_dict in enumerate(news_title_date):
if i < len(news_details):
data_dict.update({"detail": news_details[i]})

all_news = pd.DataFrame(news_title_date)
dataset = Dataset.from_pandas(all_news)
dataset.save_to_disk("mfa_press_release.arrow")
loaded_dataset = load_from_disk("mfa_press_release.arrow")
21 changes: 21 additions & 0 deletions src/data/scripts/crawl_mfa/speeches.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
import pandas as pd
from datasets import Dataset, load_from_disk
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_news import (
get_title_date,
get_info,
)

SPEECHES_URL = "https://www.mfa.go.th/th/page/%E0%B8%AA%E0%B8%B8%E0%B8%99%E0%B8%97%E0%B8%A3%E0%B8%9E%E0%B8%88%E0%B8%99%E0%B9%8C?menu=5d5bd3d815e39c306002aacd"

news_title_date = get_title_date(cur_url=SPEECHES_URL, page_no=8)
news_details = get_info(cur_url=SPEECHES_URL, page_no=8)

for i, data_dict in enumerate(news_title_date):
if i < len(news_details):
data_dict.update({"detail": news_details[i]})

all_news = pd.DataFrame(news_title_date)
dataset = Dataset.from_pandas(all_news)
dataset.save_to_disk("MFA_speeches.arrow")
loaded_dataset = load_from_disk("MFA_speeches.arrow")

20 changes: 20 additions & 0 deletions src/data/scripts/crawl_mfa/top_news.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
import pandas as pd
from datasets import Dataset, load_from_disk
from openthaigpt_pretraining_data.web_crawls_mfa.crawl_news import (
get_title_date,
get_info,
)

TOP_STORIES_URL = "https://www.mfa.go.th/th/page/%E0%B8%82%E0%B9%88%E0%B8%B2%E0%B8%A7%E0%B9%80%E0%B8%94%E0%B9%88%E0%B8%99?menu=5d5bd3d815e39c306002aac4"

news_title_date = get_title_date(cur_url=TOP_STORIES_URL, page_no=216)
news_details = get_info(cur_url=TOP_STORIES_URL, page_no=216)

for i, data_dict in enumerate(news_title_date):
if i < len(news_details):
data_dict.update({"detail": news_details[i]})

all_news = pd.DataFrame(news_title_date)
dataset = Dataset.from_pandas(all_news)
dataset.save_to_disk("MFA_top_news.arrow")
loaded_dataset = load_from_disk("MFA_top_news.arrow")