Skip to content

Commit

Permalink
Remove example in docstring (copy of test)
Browse files Browse the repository at this point in the history
  • Loading branch information
APJansen committed Feb 15, 2024
1 parent f21c68c commit caad5d1
Showing 1 changed file with 0 additions and 29 deletions.
29 changes: 0 additions & 29 deletions n3fit/src/n3fit/backends/keras_backend/multi_dense.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,35 +19,6 @@ class MultiDense(Dense):
Weights are initialized using a `replica_seeds` list of seeds, and are identical to the
weights of a list of single dense layers with the same `replica_seeds`.
Example
-------
>>> from tensorflow.keras import Sequential
>>> from tensorflow.keras.layers import Dense
>>> from tensorflow.keras.initializers import GlorotUniform
>>> import tensorflow as tf
>>> replicas = 2
>>> multi_dense_model = Sequential([
>>> MultiDense(units=8, replica_seeds=[42, 43], replica_input=False, kernel_initializer=GlorotUniform(seed=0)),
>>> MultiDense(units=4, replica_seeds=[52, 53], kernel_initializer=GlorotUniform(seed=0)),
>>> ])
>>> single_models = [
>>> Sequential([
>>> Dense(units=8, kernel_initializer=GlorotUniform(seed=42 + r)),
>>> Dense(units=4, kernel_initializer=GlorotUniform(seed=52 + r)),
>>> ])
>>> for r in range(replicas)
>>> ]
>>> gridsize, features = 100, 2
>>> multi_dense_model.build(input_shape=(None, gridsize, features))
>>> for single_model in single_models:
>>> single_model.build(input_shape=(None, gridsize, features))
>>> test_input = tf.random.uniform(shape=(1, gridsize, features))
>>> multi_dense_output = multi_dense_model(test_input)
>>> single_dense_output = tf.stack([single_model(test_input) for single_model in single_models], axis=1)
>>> tf.reduce_all(tf.equal(multi_dense_output, single_dense_output))
Parameters
----------
replica_seeds: List[int]
Expand Down

0 comments on commit caad5d1

Please sign in to comment.